Долговечность - это способность материала в течение заданного времени сохранять работоспособность. Критерий долговечности зависит от условий эксплуатации.

При циклическом нагружении долговечность определяется числом циклов до разрушения УУ Р азр и зависит от принятого предела ограниченной выносливости. Ее можно определить по выражению

N

Пред о 2 о 2

Кст° а) А? а-1

где п" уст - коэффициент концентрации напряжений в зоне усталостной трещины;

^пред _ характеризует величину остаточной макродеформации, накопленной в теле к моменту его разрушения при механических (растяжение, кручение, и т.д.), технологических или промышленных испытаниях заготовки;

Д?" сг _ 1 - величина неупругой деформации за один цикл нагружения напряжением, равным пределу выносливости;

о а - амплитудное напряжение;

о_! - предел выносливости гладкого образца;

о т - предел текучести гладкого образца.

= к м к,

  • *ч а -1 У
  • (2.3)

Выражение (2.2) выведено с учетом закономерностей линейного суммирования повреждений; действия эффективных концентраторов напряжений, к которым можно отнести дислокационные сплетения при условии, что источник Франка-Рида действует от достаточно высокого напряжения. Для пластичных материалов такая возможность возникает, когда в зоне действия концентратора напряжений от ближайшего скопления дислокаций оказывается он сам. Резкое повышение напряжений в зоне концентратора приводит к тому, что при разгрузке образца дислокации не возвращаются в исходное положение и пластическая деформация сосредотачивается в отдельных небольших объемах, которые деформируются при этом до исчерпания ресурса пластичности, и с них начинается процесс разрушения.

Величину микрообъема можно оценить по выражению

1/Уст _ (2 А)

у разр 5 V

где Е - модуль нормальной упругости.

Тогда длину пластической зоны, в которой накапливается предельная деформация, можно оценить по выражению

При этом критическая плотность дислокаций

где в - вектор Бюргерса;

Ь - размер полосы скольжения.

Относительное изменение плотности в разрушаемом элементе:

Ар ^разрА

V.

где р - плотность материала в исходном состоянии;

100% - относительное изменение плотности в%; Р

АЕ - относительное изменение модуля нормальной упругости до и после разрушения;

К р ст - разрушаемый объем при статическом нагружении.

?’/ 1ред а /

Е

Для большинства деталей машин (более 80%) долговечность определяется сопротивлением материала усталостным разрушениям (циклической долговечностью) или сопротивлением изнашиванию (износостойкостью).

Циклическая долговечность характеризует работоспособность материала в условиях многократно повторяющихся циклов напряжений. Цикл напряжения - совокупность изменения напряжения между двумя его предельными значениями о тах и о т1п в течение периода Т.

Процессы постепенного накопления повреждений в материале под действием циклических нагрузок, приводящие к изменению его свойств, образованию трещин, их развитию и разрушению, называют усталостью, а свойство противостоять усталости - выносливостью (ГОСТ 23207-78).

Разрушение от усталости по сравнению с разрушением от статической нагрузки имеет ряд особенностей.

  • 1. Оно происходит при напряжениях, меньших, чем при статической нагрузке, и меньшем пределе текучести или временном сопротивлении.
  • 2. Разрушение начинается на поверхности, в местах концентрации напряжений (деформации). Локальную концентрацию напряжений создают повреждения поверхности в результате циклического нагружения либо надрезы в виде следов обработки, воздействия среды.
  • 3. Разрушение протекает в несколько стадий, характеризующих процессы накопления повреждений в материале, образования трещин усталости.
  • 4. Разрушение имеет характерное строение излома, отражающее последовательность процессов усталости. Излом состоит из очага разрушения (места образования микротрещин) и двух зон - усталости и долома (рис. 2.2).

Долговечность материала в условиях трения определяется износостойкостью - сопротивлением изнашиванию. Износ оценивается по изменению веса или размеров детали, а долговечность - скоростью изнашивания и допустимой величиной износа.

Изнашивание - процесс постепенного изменения размеров тела при трении, проявляющийся в отделении с поверхности трения материала и (или) в его остаточной деформации:

  • износ - результат изнашивания, проявляющийся в виде отделения или остаточной деформации материала;
  • линейный износ - износ, определяемый по уменьшению размера образца (тела) по нормали к поверхности трения;
  • скорость изнашивания - отношение величины износа к времени, в течение которого он возник;
  • интенсивность изнашивания - отношение величины износа к обусловленному пути, на котором происходило изнашивание, или объему выполненной работы.

Виды изнашивания:

  • 1. Абразивное изнашивание в результате режущего или механического действия твердых тел или частиц. Механизм этого вида изнашивания заключается в удалении материала с изнашиваемой поверхности либо в виде очень мелкой стружки, либо целых участков материала, находящихся в «предразрушенном» (сильно наклепанном) состоянии.
  • 2. Изнашивание вследствие пластического деформирования. Такому изнашиванию подвержены пластичные сплавы, работающие при значительных нагрузках и повышенных температурах.

Рис. 22.

  • 1 - очаг зарождения трещины; 2 - зона усталости;
  • 3 - зона долома (схема)

Происходит постепенное перемещение поверхностных слоев в направлении скольжения, приводящее к изменению размеров изделия. В данном случае износ не сопровождается потерей массы.

  • 3. Изнашивание при хрупком разрушении. Это изнашивание происходит, когда поверхностный слой одного из трущихся металлов претерпевает большую пластическую деформацию, интенсивно наклепывается, становится хрупким и затем разрушается, обнажая лежащий под ним менее хрупкий материал, после чего явление повторяется, т.е. носит циклический характер.
  • 4. Усталостное разрушение, или контактная усталость, представляет собой процесс накопления и развития разрушения поверхностных слоев материала под действием переменных контактных нагрузок, вызывающих образование ямок выкрашивания (питтинга) или трещин. Этот вид разрушения, связанный с локальным разрушением поверхности, проявляется только через некоторое время работы деталей, особенно при трении качения или качения с проскальзыванием, когда контакт деталей является сосредоточенным (шарико-и роликоподшипники, зубья шестерен И Т.Д.).
  • 5. Адгезивное изнашивание. Это изнашивание связано с различными видами «схватывания» металла при трении: перенос (диффузионный) металла с одной поверхности на другую; вырывания частиц одной поверхности и налипание или наволакивание их на другую, что обычно ведет к появлению на поверхности рисок и задиров; заедание сопряженных деталей, сопровождаемое резким повреждением поверхностей и повышением сопротивления трения.
  • 6. Тепловое изнашивание - это когда чистые (от пленок или адсорбированного вещества) поверхностные слои трущихся металлов разогреваются до высоких температур, что наблюдается при трении скольжения с большими скоростями и значительными удельными давлениями и происходит тепловое изнашивание. При нагреве и охлаждении с большими скоростями структурные изменения в стали распространяются на глубину от 5 до 80 мкм.

В интервале температур, мало снижающих прочность трущихся поверхностей металлов (для стали - до 600 °С), тепловой износ характеризуется контактным схватыванием и разрушением мест схватывания с малыми пластическими деформациями; поверхность трения на этой стадии износа покрыта надрывами, чередующимися через правильные промежутки. В интервале температур (для стали выше 600 °С) тепловой износ характеризуется контактным схватыванием и пластическим разрушением точек схватывания с налипанием и размазываем металла на трущихся поверхностях. В интервале температур плавления разрушение контактирующих поверхностей в процессе износа происходит путем уноса пленок расплавленного металла.

  • 7. Окислительное изнашивание. Такое изнашивание возможно, когда кислород воздуха или кислород, находящийся в смазке, вступая во взаимодействие с трущейся поверхностью металла, образуют на ней окисную пленку. Изнашивание в этом случае определяется механическим удалением окисных пленок при трении, их уносом вместе со смазкой и новым образованием свежих пленок.
  • 8. Изнашивание в условиях агрессивного действия жидкой среды. Такой средой может быть неудачно выбранная смазка, либо какая-то активная жидкость, присутствие которой обусловлено конкретными

условиями эксплуатации. Частным видом данного вида изнашивания является фреттинг-коррозия, т.е. изнашивание мест сопряжения деталей, находящихся под нагрузкой, при продольных вибрациях). Фреттинг-коррозия возникает под действием промышленной атмосферы или просто влаги.

9. Особые виды изнашивания. Кавитационное изнашивание деталей появляется в потоке жидкости, движущейся с переменной скоростью в закрытом канале, например, в потоке воды, несущей песок.

Эрозионное изнашивание состоит в отделении частиц поверхности тела в результате соприкосновения с ним движущейся жидкой или газовой среды или увлекаемых ею твердых частиц, либо в результате ударов потока твердых частиц.

Износостойкость - свойство материала оказывать в определенных условиях трения сопротивление изнашиванию.

Износостойкость материала оценивают величиной, обратной скорости V или интенсивности J h изнашивания.

Скорость и интенсивность изнашивания представляют собой отношение износа соответственно к времени или пути трения. Чем меньше значение скорости изнашивания при заданном износе АИ, тем выше ресурс работы / узла трения

t = Ah/v h . (2.9)

Работоспособность материала детали в условиях эксплуатации характеризуют следующие критерии конструкционной прочности:

  • 1) критерии прочности а в, а 0 2 , а_ 1? которые при заданном запасе прочности определяют допустимые рабочие напряжения, массу и размеры деталей;
  • 2) модуль упругости Е, который при заданной геометрии детали определяет величину упругих деформаций, т.е. ее жесткость;
  • 3) пластичность 5, ф, ударная вязкость КСТ, КСУ, КС1), вязкость разрушения К 1с, температурный порог хладноломкости / 50 , которые оценивают надежность материала в эксплуатации;
  • 4) циклическая долговечность, скорости изнашивания, ползучести, коррозии, определяющие долговечность материала.

При проектировании металлических конструкций также должны учитываться следующие основные требования.

Условия эксплуатации. Удовлетворение заданным при проектировании условиям эксплуатации является основным требованием для проектировщика. Оно в основном определяет систему, конструктивную форму сооружения и выбор материала для него.

Экономия металла. Требование экономии металла определяется большой его потребностью во всех отраслях промышленности (машиностроение, транспорт и т.д.) и относительно высокой стоимостью. В строительных конструкциях металл следует применять лишь в тех случаях, когда замена его другими видами материалов (в первую очередь, железобетоном) нерациональна.

Транспортабельность. Металлические конструкции изготавливаются на заводах и впоследствии перевозятся на место строительства, поэтому в проекте должна быть предусмотрена возможность перевозки их целиком или по частям (отправочными элементами) с применением соответствующих транспортных средств.

Технологичность. Конструкции должны проектироваться с учетом требований технологии изготовления и монтажа с ориентацией на наиболее современные и производительные технологические приемы, обеспечивающие максимальное снижение трудоемкости.

Скоростной монтаж. Конструкция должна соответствовать возможностям сборки ее в наименьшие сроки с учетом имеющегося монтажного оборудования. Ведущим принципом скоростного монтажа является сборка конструкций в крупные блоки на земле с последующим подъемом их в проектное положение с минимальным количеством монтажных работ наверху.

Долговечность конструкции определяется сроками ее физического и морального износа. Физический износ металлических конструкций связан главным образом с процессами коррозии. Моральный износ связан с изменением условий эксплуатации.

Эстетичность. Конструкции, независимо от их назначения, должны обладать гармоничными формами. Особенно существенно это требование для общественных зданий и сооружений.

Не менее важной из числа ЭТХ является долговечность – свойство конструкции объекта сохранять работоспособность до наступления предельного состояния при заданной системе ТОиР. При этом предельным считается такое состояние объекта, при котором его дальнейшее применение по назначению недопустимо или нецелесообразно.

Признаки предельного состояния устанавливаются нармативно-технической документацией на данный объект эксплуатации.

Долговечность зависит от многочисленных факторов, которые можно подразделить на прочностные, эксплуатационные и организационные.

Прочностные включают конструктивные, производственные, технологические, нагрузочные и температурные факторы. Они происходят из-за концентрации напряжений в элементах конструкции и остаточных напряжений, возникающих при несовершенной технологии и за счет пластических деформаций при сборке узлов или ремонте, и зависят от свойств материалов и их изменения во время эксплуатации. Решающее воздействие на конструкцию ЛА оказывает также и внешняя среда.

Эксплуатационные факторы включают: режимы полета, различающиеся по скорости, высоте, применяемым маневрам, полетной массе ЛА: состояние ВПП; продолжительность руления и буксировки по ВПП; индивидуальные особенности членов экипажа и их профессиональную подготовку; метеорологические и климатические условия полетов, в том числе турбулентность атмосферы, градиенты температуры по высоте, снег, град и др.; квалификацию инженерно-технического персонала (ИТП), определяемую, в частности, знанием конструкции ЛА, полнотой обнаружения неисправностей и повреждений, мест начального развития трещин, своевременностью и эффективностью мер по их локализации и устранению; качеством и полнотой профилактических мероприятий, а также качеством использования применяемых средств контроля технического состояния ЛА и др.

Организационные факторы включают: техническую общеинженерную и специальную подготовку ИТП; выбор соответствующей стратегии и методов; ритмичность в проведении форм ТО по принятой программе и проведение текущих ремонтов; своевременность в обеспечении производства запасными частями при появлении отказов и выполнении текущих ремонтов; применяемые методы и средства механизации и автоматизации процессов подготовки ЛА к полетам; поиск неисправностей, отказов и их устранение; выполнение других работ, связанных с подготовкой ЛА к полетам, в особенности использования автоматизированных средств контроля технического состояния всех функциональных систем ЛА и др.

Долговечность, как и безотказность, оценивается определенной совокупностью показателей. Для количественной оценки долговечности используется понятие ресурса и срока службы. При этом ресурс измеряется в часах наработки, посадках, циклах, а срок службы – календарной продолжительностью эксплуатации объекта.

Применительно к ЛА, двигателям, агрегатам и изделиям приняты следующие виды ресурсов и сроков службы .

Гарантийный ресурс (срок службы) – наработка (календарное время), в течение которой предприятие-изготовитель несет ответственность за техническое состояние объекта при условии выполнения инструкции по эксплуатации. В течение гарантийного ресурса возникающие на объекте отказы и повреждения изготовитель устраняет своими силами за свой счет.

Ресурс (срок службы) до первого ремонта – наработка (календарное время) от начала эксплуатации до поступления объекта в первый ремонт.

В процессе разработки объекта конструкторы стремятся обеспечить максимальное значение ресурса до первого ремонта, так как это связано с эффективностью использования объекта по назначению. При этом стараются также выполнить требования, чтобы ресурсы до ремонта комплектующих изделий и агрегатов были соответственно не меньше ресурса до первого ремонта основного объекта (летательного аппарата, двигателя).

Межремонтный ресурс (срок службы) – наработка (календарное время) между двумя смежными ремонтами объекта. Межремонтные ресурсы устанавливаются на основе обобщения опыта эксплуатации и первого ремонта объекта. Их значения, как правило, меньше значений до первого ремонта объекта. В лучшем случае они могут быть равными.

Средний ресурс (срок службы) – математическое ожидание ресурса (срока службы) объекта эксплуатации. Этот показатель обычно используют при обработке данных испытаний элементов конструкции и узлов до предельного состояния, обусловленного, например, усталостным разрушением, износом и т.д. Его также используют при обработке статистических данных по отказам, возникающим в эксплуатации.

Гамма-процентный ресурс (срок службы) – наработка (календарное время), в течение которой объект не достигнет предельного состояния с заданной вероятностью , выраженной в процентах. При заданном значении мы имеем вполне определенное значение гамма-процентного ресурса Т р, (рис.3.3).

Рис.3.3. Схема определения гамма-процентного ресурса: T p ( =2000ч; T p ( =3000ч.

– суммарная наработка (календарное время), при достижении которой применение объекта по назначению должно быть прекращено.

Назначенные ресурсы по характеру обоснования различаются на расчетные – обоснованные соответствующими расчетами и подтвержденные – обоснованные различными испытаниями. При эксплуатации объекта руководствуются подтвержденными назначенными ресурсами.

Процесс подтверждения ресурса является ступенчатым, поэтапным. Поэтому действующий в тот или иной промежуток времени эксплуатации объекта назначенный ресурс носит название временного назначенного ресурса (срока службы).

Значения показателей долговечности для некоторых типов самолетов, вертолетов, двигателей приведены в табл.3.2 и 3.3

Таблица 3.2

Показатели долговечности ЛА (по состоянию на 1.01.2001г.)

Таблица 3.3

Показатели долговечности двигателей (по состоянию на 1.01.2001г.)

Долговечность конструкции объекта обеспечивается при проектировании и производстве. На этих этапах выполняются большие объемы расчетов и испытаний.

В расчетных методах исходят из предположения, что долговечность ограничивается усталостными свойствами конструкции, следовательно, речь идет о прочностном ресурсе конструкции. Можно выделить два расчетных метода: суммирования повреждений и касания. Остановимся на первом из методов.

Метод суммирования повреждений широко используется при расчете прочностного ресурса ЛА. При использовании этого и других расчетных методов в условиях эксплуатации ЛА выделяют время активного и пассивного нагружения. В расчете используются лишь время активного нагружения. Активное время нагружения включает цикл: взлет – полет – посадка, руление по аэродрому и буксировку. Время стоянки на ВПП относят к пассивному нагружению, и долей, которую оно вносит в активное нагружение, обычно пренебрегают. Таким образом, прочностной ресурс представляет собой суммарное время активного нагружения. Метод суммирования повреждений основывается на гипотезе, в основе которой лежит предположение, что усталостное повреждение является линейной функцией числа циклов нагружения.

За один цикл нагружения принимается типовой полет. Нагрузки типового полета многократно повторяются.

Схема суммирования повреждений представлена на рис.3.4

Рис.3.4. Схема суммирования повреждений:

1 – линейный закон накопления усталостных повреждений; 2- фактическое накопление усталостных повреждений

Вероятность разрушения Q(t) в общем случае составляет

где n i – число действующих циклов нагружения определенной амплитуды;

Ni – число циклов нагружения той же амплитуды, необходимое для разрушения; k- число уровней циклов, различных по амплитуде.

В соответствии с гипотезой о независимости усталостных повреждений и линейном их суммировании разрушение конструкции произойдет тогда, когда сумма повреждений от всех видов нагрузок будет равна единице Q(t)=1. Это есть условие разрушения.

Ломанная линия ОК на рис.3.4 означает задаваемый при расчетах закон накопления повреждений. Фактический процесс накопления усталостных повреждений в конструкции изображен на рисунке линией 0 абс.

Из приведенных зависимостей следует, что вероятность неразрушения Р(t) = 0.5, задаваемая по закону накопления повреждений ОК, может соответствовать истинной вероятности неразрушения по закону 0 абс значительно более высокой, например, порядка 0.9999. Однако, учитывая сложность авиационных конструкций, а также условия их нагружения в процессе эксплуатации, полученная таким образом вероятность неразрушения (0.999) является еще не вполне достаточной для исключения случаев появления трещин в элементах конструкции. Возникает необходимость проведения периодических осмотров конструкции планера с целью выявления появляющихся в эксплуатации повреждений.

Для подтверждения показателей долговечности конструкция ЛА и его компонентов проверяется при проведении испытаний : а)статических и б) испытаний на ресурс.

Задачи статических испытаний:

· проверка методов расчета,

· выявление истинной прочности,

· определение поля напряжений конструкции,

· проверка равномерности распределения напряжений,

· определение запасов прочности.

Испытания на ресурс включают:

· испытания на усталость при высокочастотных нагрузках (от нескольких десятков герц и выше);

· испытания на повторно-статическое нагружение при низкочастотных нагрузках (от нескольких циклов до нескольких десятков циклов в минуту).

Испытания проводятся для выяснения характеристик выносливости испытуемых компонентов при различных уровнях нагружений. С целью получения достоверных данных испытаниям подвергаются несколько компонентов новых и с разной наработкой в эксплуатации (рис.3.5). Программа испытаний воспроизводит спектр нагружения во времени. Нагружение осуществляется с помощью гидродомкратов, управляемых ЭВМ.

По результатам испытаний определяется ресурс Т рес = ,

где n э - коэффициент надежности.


Рис.3.5. Схема определения наработки до разрушения t разр:

х – экспериментальные точки для компонентов ЛА с разной наработкой в эксплуатации t 1 ,t 2 ,t 3 ..t n ;

N 1 ,N 2 ,..N n – число циклов до разрушения.

Трудности экспериментального метода заключаются в том, что испытание целого ЛА или крупногабаритных его компонентов весьма трудоемки и дороги. Это вынуждает ограничиваться малым числом испытуемых объектов. К тому же условия нагружения элементов конструкции ЛА в полете характеризуются большим разнообразием и случайной повторяемостью нагрузок, которые практически невозможно производить в лабораторных условиях. Это на практике приводит к тому, что некоторые элементы и узлы, показавшие вполне удовлетворительную выносливость при испытаниях, оказываются недостаточно выносливыми в реальных условиях работы в полете. На основе экспериментальных методов можно определить прочностной ресурс, выявить слабые места конструкции и характер возможного разрушения, а также оценить скорость развития трещин в элементах.

С появлением аналитических методов расчета времени развития трещины от заметной величины до предельной длины стала возможной реальная оценка периода налета между осмотрами. Также становится возможным при заданном интервале между осмотрами установить максимальную длину трещины при каждом осмотре.

  • Абсолютные и относительные показатели изменения структуры
  • Абсолютные, относительные и средние показатели в статистике
  • Анализ ФСП основывается главным образом на относительных показателях, так как абсолютные показатели баланса в условиях инфляции сложно привести в сопоставимый вид.
  • Для оценки долговечности используются две группы единичных (частных) показателей: сроки службы и ресурсы. Срок службы это календарная продолжительность эксплуатации в определенных условиях до разрушения или предельного состояния.

    Различают сроки службы:

    До капитального ремонта,

    Между капитальными ремонтами,

    Суммарный (полный).

    Срок службы до капитального ремонта – продолжительность эксплуатации до первой полной разборки с заменой или восстановлением ряда элементов, в том числе части основных деталей.

    Срок службы между капитальными ремонтами (между первым и вторым и т.д.) зависит от качества ремонта, от того, в какой степени восстанавливается ресурс оборудования.

    Суммарный срок службы это календарная продолжительность от начала эксплуатации до выбраковки (до списания).

    Эта группа показателей имеет следующие достоинства:

    Простота учета;

    Удобство использования для планирования сроков замены оборудования, поставки запасных частей, сроков проведения ремонтов.

    Основным недостатком таких показателей является то, что они не учитывают интенсивность эксплуатации оборудования, объем выполненной им работы.

    От этого недостатка свободна вторая группа показателей – технические ресурсы. Технический ресурс это наработка изделия в заданных условиях эксплуатации до капитального ремонта либо до замены. Измеряется объемом выполненной работы. Может измеряться и в часах непрерывной работы. Например, для автомобильных двигателей в моточасах. Для других видов средств технологического оснащения в часах работы при зафиксированном объеме простоев как организационных и технологических, так и в техническом обслуживании и ремонте.

    Ресурс – величина, расходуемая в процессе эксплуатации.

    Различают:

    Полный технический ресурс,

    Использованный технический ресурс,

    Остаточный технический ресурс.

    Полный – от начала эксплуатации до капитального ремонта или замены. Использованный – от начала эксплуатации или от начала работы после капитального ремонта до рассматриваемого момента. Остаточный – от рассматриваемого момента до капитального ремонта или конца эксплуатации.

    Ресурс – величина статистическая, подвержена рассеянию. В связи с этим широко используется такой показатель как гарантированный ресурс. Гамма процентный ресурс – технический ресурс, которым обладают не менее изделий данной модели, где - гарантированная вероятность. выбирается в зависимости от назначения, масштабов и технологии производства, последствий отказов. Например, если =0,9 это означает, что 90% всех изделий обладают ресурсом не менее указанного и лишь 10% могут иметь меньший ресурс. Отсюда очевидно, что средний ресурс ( =0,5) превышает гарантированный. Для подшипников общего назначения принимается равным 0,9.

    Следует обратить внимание на то, что нельзя путать понятия гарантированный ресурс и гарантийный срок эксплуатации. Под последним понимается продолжительность эксплуатации, в течение которой завод изготовитель и ремонтные предприятия несут материальную ответственность за неисправности, выявившиеся у потребителя при условии соблюдения им правил эксплуатации. Гарантийный срок эксплуатации измеряется небольшой долей технического ресурса изделия. Это понятие не только техническое, но и юридическое и не может применяться в качестве показателя долговечности. Однако это понятие в какой-то мере характеризует качество изготовления и контроля, поскольку в этот период выявляются, как правило, дефекты, пропущенные контролем. Из группы показателей долговечности – ресурсов наибольшее распространение получили гарантированный ресурс, средний ресурс, среднеквадратическое отклонение ресурса от его среднего значения ().

    6.5. Выбор показателей долговечности средств технологического оснащения и их элементов

    Выбор показателей долговечности необходимо осуществлять от общего к частному, т.е. от оборудования в целом (О) к его элементам: агрегатам (А), механизмам (М), узлам (У), деталям (Д) по схеме О-А-М-У-Д. Для обеспечения заданной нормы долговечности оборудования долговечность основных деталей должна быть существенно выше. При этом не должна идти речь о равной долговечности деталей. Массовые детали могут заменяться многократно за срок службы оборудования. Для снижения неопределенности надежности, обеспечения возможности групповых замен деталей необходимо стремиться к кратной долговечности. Тогда, например, при двенадцатой замене деталей 1-ой группы, 6-ой раз заменяются детали 2-ой, 4-ый раз третьей, 3-ий раз четвертой и второй пятой группы.

    Задача повышения долговечности средств технологического оснащения сложная, поскольку речь идет, по сути, о распределении затрат между производителем и потребителем. Затраты первого повышаются, второго снижаются за счет:

    Уменьшения стоимости эксплуатации (сокращение расхода запасных частей, уменьшение частоты ремонтных воздействий),

    Сокращения простоев оборудования.

    Наиболее приемлемыми показателями долговечности являются:

    а) для деталей:

    1. ресурс до первого восстановительного ремонта;

    2. средний ресурс до первого восстановительного ремонта.

    б) для узлов, механизмов:

    2. ресурс до первого капитального ремонта;

    3. средний ресурс до первого капитального ремонта.

    в) для агрегатов и оборудования в целом:

    1. ресурс до первого ремонта с трудоемкой разборкой;

    Показатели долговечности.

    Лекции

    Основы теории надежности и диагностики.

    Общие сведения.

    Диагноз распознавания: Объект, состояние которого определено, называется объектом диагноза.

    Диагностика представляет собой процесс исследования объекта диагноза. Завершением этого исследования является получение результата диагноза, т.е. заключение о состоянии объекта (объект исправен, объект не исправен, в объекте имеется такая то неисправность). Диагностика – отрасль знаний, включающая в себя теорию и методы организации процессов диагноза, а так же принципы построения средств диагноза. Когда объектом диагноза является объекты технической природы, говорят о технической диагностике. Техническая диагностика решает три типа задач по определению состояний технических объектов:

    1) Задачи по определению состояния, в котором находится объект в настоящий момент времени. Это задачи диагностики;

    2) Задачи по предсказанию состояния, в котором окажется объект, в некотором роде это будет момент времени. Это задача прогноза прогнозирования. К задачам технического прогнозирования относятся задачи по назначению периодичности профилактики и ремонта;

    3) Задачи определения состояния, в котором находился объект в некоторый момент времени в прошлом. Это задачи генеза отрасль, решающая задачи этого типа называется технической генетикой. К этим задачам относятся, например, причины аварии.

    В жизни любого объекта, как некоторого изделия всегда можно выделить два этапа: производство и эксплуатация данного объекта. Бывает так же этап хранения этого объекта.

    Для любого объекта на каждом этапе его жизни задаются определенные технические требования. Желательно, чтобы объект всегда соответствовал этим требованиям. Однако в объекте могут возникнуть неисправности, нарушающие указанное соответствие прибора. Тогда задача состоит в том, чтобы создать на этапе производства или восстановить нарушенную неисправность (которая может появиться на этапах эксплуатации или хранения) в соответствии с заданными техническими требованиями прилагаемыми объекту.

    Решение этой задачи невозможно без эпизодического или непрерывного диагноза состояния объекта. Состояние объекта определяется его надежностью.

    Надежность: свойство объекта выполнять задан­ные функции, сохраняя во времени значения установленных эксплуатаци­онных показателей в определенных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремон­тов, хранения и транспортирования.

    Надежность включает в себя следующие свойства: безотказность, долговечность, сохраняемость и ремонтопригодность.

    Исправное состояние: это состояние, при котором прибор соответствует всем требованиям устнормативной – технической документации.

    Неисправное состояние: это состояние, при котором прибор, объект не соответствует хотя бы одному из требований нормативно – технической документации.

    Работоспособное состояние: это состояние объекта, при котором он способен выполнять заданные функции, сохраняя значения заданных нормативов в пределах установленных документацией.

    Неработоспособное состояние: это состояние, при котором значения хотя бы одного заданного параметра не соответствуют нормативно – технической документации.

    Понятие повреждение заключается в нарушении исправного состояния изделия при сохранении его работоспособности. Для любого изделия существуют понятия: дефект, неисправность, отказ, сбой и ошибка.

    Предельное состояние : это состояние изделия при котором его дальнейшее применение по назначению не допустимо или не целесообразно.

    Дефект: это отклонение от параметров изделия относительно заданных в нормативно – технической документации.

    Неисправность: форматированное представление факта проявления дефекта на входах и выходах изделия.

    Отказ: это дефект, связанный с необратимыми нарушениями характеристик изделия, приводящим к нарушению его работоспособного состояния.

    Сбой: дефект, заключающийся в том, что в результате временного изменения параметров изделия в течение некоторого периода времени оно будет функционировать непрерывно. Причем его работоспособность восстанавливается самонаправленно. Помехи, воздействующие на работоспособность.

    Ошибки: (для дискретной техники) называют неправильное значение сигналов на внешних входах изделия, вызванное неисправностями, переходными процессами или помехами, воздействующими на изделие.

    Число дефектов, неисправностей, отказов, сбоев, одновременно присутствующих в изделии называют кратностью .

    Кратность ошибок определена не только кратностью неисправности, из-за которой она возникла, но и структурной схемой изделия, т.к. в результате имеющихся разветвлений в схеме однократная неисправность может вызвать многократную ошибку в последовательных цепях.

    Наработка на отказ – это случайная величина, представляющая собой интервал времени от момента включения устройства до первого отказа.

    Ресурсом ТС называют наработку системы до предельного состояния, при достижении которого дальнейшая эксплуатация прекращается.

    Безотказность: свойство изделия, в котором он непрерывно сохраняет работоспособность в течение некоторого времени.

    Ремонтопригодность: свойство изделия, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения его отказов, повреждений и устранения их путем ремонта и технического обслуживания.

    Свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов называется долговечностью.

    Сохраняемость – это свойство объекта непрерывно сохранять исправное и работоспособное состояние в течение и после хранения и транспортирования. Сохраняемость характеризуется способностью объекта противостоять отрицательному влиянию условий хранения и транспортирования на его безотказность и долговечность. Продолжительное хранение и транспортирование объектов могут снизить их надежность при последующей работе по сравнению с объектами, которые не подвергаются хранению и транспортировке.

    Основные характеристики ТС:

    Показатели безотказности:

    1) Вероятность безотказной работы R(t) – это вероятность того, что в заданном интервале времени t в изделии не возникает отказа.

    0£ R(t) £1; R(o) = 1; R(¥) = 0;

    Функция R(t) является монотонно убывающей функцией, т.е. в процессе эксплуатации и хранения надежность только убывает. Для определения R(t) используется следующая статическая оценка:



    где N – число изделий, поставленных на испытание (эксплуатацию).

    N 0 – число изделий, отказавших в течении времени t.

    2) Вероятность бессбойной работы Р сб (t) – это вероятность того, что в заданном интервале времени t будет отсутствовать сбой в изделии.

    Р сб (t) = 1- Q сб (t); где - Q сб (t) функция распределения сбоев в течение времени t.

    Для определения стабильности оценки мы имеем формулу:

    где N – число изделий поступивших на эксплуатацию.

    N 0 – число изделий, в которых произошел сбой в течение времени t.

    3) Интенсивность отказа l(t) – это условная плотность вероятности возникновения отказа не восстанавливаемого объекта, определенного рассмотренного момента времени, при условии, что до этого момента отказ не возник.

    Для определенно l(t) используется следующая статистическая оценка:

    где n(Dt) – число отказавших изделий в интервал времени (Dt).

    N ср (Dt) – среднее число исправных изделий в интервал времени (Dt).

    ;

    4) Средняя наработка до отказа (среднее время безотказной работы) Т – это математическое ожидание наработки до первого отказа определяется так:

    Эти показатели рассчитаны на изделие, которое не подлежит восстановлению.

    Показатели ремонтопригодности:

    1) Вероятность восстановления s(t) – это вероятность того, что отказавшее изделие будет восстановлено в течение времени t.

    где n в – число изделий время восстановления которых было < (меньше) заданного времени t. N ов – число изделий оставшихся на восстановлении.

    2) Интенсивность восстановленного М(t) – условная плотность распространения времени восстановления для момента времени t при условии, что до этого момента восстановление изделия не произошло.

    где n в (Dt) – число восстановленных изделий за время Dt. N в.ср (Dt) – среднее число изделий которые, не были восстановлены в течение времени Dt.

    3) Среднее время восстановления Т в – это натуральная величина ожидания восстановления.


    Статистическая оценка: ;

    4) Коэффициент готовности К г (t) – это вероятность того, что изделие работоспособно в произвольный момент времени t.

    Для повышения долговечности ремонтируемых машин, отдельных узлов, соединений, а также деталей путем их восстановления, выбора рационального способа восстановления и материала покрытия, определения расхода запасных частей весьма важно знать и уметь оценивать величины предельных! износов и других показателей долговечности.

    Согласно ГОСТ 27.002-83, долговечность - свойство объекта (детали, узла, машины) сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта. В свою очередь, работоспособное состояние - состояние объекта, при котором значение всех параметров, характеризующих способность выполнять заданные функции, соответствует требованиям нормативно-технической и (или) конструкторской документации; предельное состояние - состояние объекта, при котором его дальнейшее применение по назначению недопустимо или нецелесообразно, либо восстановление его исправного или работоспособного состояния невозможно или нецелесообразно. При этом следует иметь в виду, что для неремонтируемых объектов предельного состояния может достигнуть не только неработоспособный объект, но и работоспособный, применение которого оказывается недопустимым согласно требованиям безопасности, безвредности, экономичности, эффективности. Переход такого неремонтируемого объекта в предельное состояние происходит раньше возникновения отказа.

    С другой стороны, объект может оказаться в неработоспособном состоянии, не достигнув предельного состояния. Работоспособность такого объекта, а также объекта, находящегося в предельном состоянии, восстанавливается с помощью ремонта, при котором происходит восстановление ресурса объекта в целом.

    Основными техническими оценочными показателями долговечности являются ресурс и срок службы. При характеристике показателей следует указывать вид действия после наступления предельного состояния объекта (например, средний ресурс до капитального ремонта; гамма-процентный ресурс до среднего ремонта и т. д.). В случае окончательного снятия с эксплуатации объекта, обусловленного предельным состоянием, показатели долговечности называются: полный средний ресурс (срок службы), полный гамма-процентный ресурс (срок службы), полный назначенный ресурс (срок службы). Полный срок службы включает в себя продолжительности всех видов ремонта объекта. Рассмотрим основные показатели долговечности и их разновидности, конкретизирующие этапы или характер эксплуатации.

    Технический ресурс - наработка объекта от начала его эксплуатации или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

    Срок службы - календарная продолжительность от начала эксплуатации объекта или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

    Наработка - продолжительность или объем работы объекта.

    Наработка объекта может быть:

    1) наработка до отказа - от начала эксплуатации объекта до возникновения первого отказа;

    2) наработка между отказами - от окончания восстановления работоспособного состояния объекта после отказа до возникновения следующего отказа.

    Технический ресурс представляет собой запас возможной наработки объекта. Различают следующие виды технического ресурса: доремонтный ресурс -наработка объекта до первого капитального ремонта; межремонтный ресурс - наработка объекта от предыдущего до последующего ремонта (число межремонтных ресурсов зависит от числа капитальных ремонтов); послеремонтный ресурс -наработка от последнего капитального ремонта объекта до его перехода в предельное состояние; полный ресурс - наработка от начала эксплуатации объекта до его перехода в предельное состояние, соответствующее окончательному прекращению эксплуатации. Виды сроков службы подразделяются так же, как и ресурсы.

    Средний ресурс - математическое ожидание ресурса. Показатели «средний ресурс», «средний срок службы», «средняя наработка» определяют по формуле

    где - средняя наработка до отказа (средний ресурс, средний срок службы); f(t)-плотность распределения наработки до отказа (ресурса, срока службы); F(t) - функция распределения наработки до отказа (ресурса, срок службы).

    Гамма-процентный ресурс - наработка, в течение которой объект не достигает предельного состояния с заданной вероятностью γ, выраженной в процентах. Гамма-процентный ресурс , гамма-процентный срок службы определяют по следующему уравнению:

    где t γ - гамма-процентная наработка до отказа (гамма-процентный ресурс, гамма-процентный срок службы).

    При γ = 100% гамма-процентная наработка (ресурс, срок службы) называется установленной безотказной наработкой (установленным ресурсом, установленным сроком службы). При γ=50% гамма-процентная наработка (ресурс, срок службы) называется медианной наработкой (ресурсом, сроком службы).

    Отказ - событие, заключающееся в нарушении работоспособного состояния объекта.

    Назначенный ресурс - суммарная наработка объекта, при достижении которой применение по назначению должно быть прекращено.

    Назначенный ресурс (срок службы) установлен с целью принудительного заблаговременного прекращения применения объекта по назначению, исходя из требований безопасности или: экономического анализа. При этом в зависимости от технического состояния, назначения, особенностей эксплуатации объект после достижения назначенного ресурса может эксплуатироваться дальше, сдан в капитальный ремонт, списан.

    Предельный износ - это износ, соответствующий предельному состоянию изнашивающегося изделия. Основными признаками приближения предельного износа являются увеличение расхода топлива, снижение мощности, снижение прочности деталей, т. е. дальнейшая работа изделия становится технически ненадежной и экономически нецелесообразной. При достижении предельных износов деталей и соединений их полный ресурс (Т п) исчерпывается, и необходимо принимать меры для его восстановления.

    Допустимый износ - износ, при котором изделие сохраняет работоспособность, т. е. при достижении этого износа детали или соединения могут работать без их восстановления еще целый межремонтный срок. Допустимый износ меньше предельного, и остаточный ресурс деталей не исчерпан.