Измерением называется процесс нахождения опытным путем значения физической величины с помощью специальных технических средств. Электроизмерительные приборы широко используются при наблюдении за работой электроустановок, при контроле за их состоянием и режимами работы, при учете расхода и качества электрической энергии, при ремонте и наладке электротехнического оборудования.

Электроизмерительными приборами называют средства электрических измерений, предназначенные для выработки сигналов, функционально связанных с измеряемыми физическими величинами в форме, доступной для восприятия наблюдателем или автоматическим устройством.

Электроизмерительные приборы делятся:

  • по виду получаемой информации на приборы для измерения электрических (ток, напряжение, мощность и др.) и неэлектрических (температура, давление и др.) величин;
  • по методу измерения - на приборы непосредственной оценки (амперметр, вольтметр и др.) и приборы сравнения (измерительные мосты и компенсаторы);
  • по способу представления измеряемой информации - на аналоговые и дискретные (цифровые).

Наибольшее распространение получили аналоговые приборы непосредственной оценки, которые классифицируются по признакам: род тока (постоянный или переменный), род измеряемой величины (ток, напряжение, мощность , сдвиг фаз), принцип действия (магнитоэлектрические, электромагнитные, электро- и ферродинамические), класс точности и условия эксплуатации.

Для расширения пределов измерения электрических приборов на постоянном токе используются шунты (для тока) и добавочные сопротивления Rd (для напряжения); на переменном токе трансформаторы тока (тт) и напряжения (тн).

Используемые приборы для измерения электрических величин.

Измерение напряжения осуществляется вольтметром (V), подключаемым непосредственно на зажимы исследуемого участка электрической цепи.

Измерение тока осуществляется амперметром (А), включаемым последовательно с элементами исследуемой цепи.

Измерение мощности (W) и сдвига фаз () в цепях переменного тока производится с помощью ваттметра и фазометра. Эти приборы имеют две обмотки: неподвижную токовую, которая включается последовательно, и подвижную обмотку напряжения, включаемую параллельно.

Для измерения частоты переменного тока (f) применяются частотометры.

Для измерения и учета электрической энергии - счетчики электрической энергии, подключаемые к измерительной цепи аналогично ваттметрам.

Основными характеристиками электроизмерительных приборов являются: погрешность, вариации показаний, чувствительность, потребляемая мощность, время установления показаний и надежность.

Основными частями электромеханических приборов являются электроизмерительная цепь и измерительный механизм.

Измерительная цепь прибора является преобразователем и состоит из различных соединений активного и реактивного сопротивлений и других элементов в зависимости от характера преобразования. Измерительный механизм преобразует электромагнитную энергию в механическую, необходимую для углового перемещения его подвижной части относительно неподвижной. Угловые перемещения стрелки а функционально связано с крутящим и противодействующим моментом прибора уравнением преобразования вида:

к - конструктивная постоянная прибора;

Электрическая величина, под действием которой стрелка прибора отклоняется на угол

На основании данного уравнения можно утверждать, что если:

  1. входная величина Х в первой степени (п=1), то а будет менять знак при изменении полярности, и на частотах, отличных от 0, прибор работать не может;
  2. n=2, то прибор может работать как на постоянном, так и на переменном токе;
  3. в уравнение входит не одна величина, то в качестве входной можно выбирать любую, оставляя остальные постоянными;
  4. две величины являются входными, то прибор можно использовать в качестве множительного преобразователя (ваттметр, счетчик) или делительного (фазометр, частотометр);
  5. при двух или более входных величинах на несинусоидальном токе прибор обладает свойством избирательности в том смысле, что отклонение подвижной части определяется величиной только одной частоты.

Общими элементами являются: отсчетное устройство, подвижная часть измерительного механизма, устройства для создания вращающего, противодействующего и успокаивающего моментов.

Отсчетное устройство имеет шкалу и указатель. Интервал между соседними метками шкалы называют делением.

Цена деления прибора представляет собой значение измеряемой величины, вызывающее отклонение стрелки прибора на одно деление и определяется зависимостями:

Шкалы могут быть равномерными и неравномерными. Область между начальным и конечным значениями шкалы называют диапазоном показаний прибора.

Показания электроизмерительных приборов несколько отличаются от действительных значений измеряемых величин. Это вызвано трением в измерительной части механизма, влиянием внешних магнитных и электрических полей, изменением температуры окружающей среды и т.д. Разность между измеренным Аи и действительным Ад значениями контролируемой величины называется абсолютной погрешностью измерений:

Так как абсолютная погрешность не дает представления о степени точности измерений, то используют относительную погрешность:

Поскольку действительное значение измеряемой величины при измерении неизвестно, для определения и можно воспользоваться классом точности прибора.

Амперметры, вольтметры и ваттметры подразделяются на 8 классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Цифра, обозначающая класс точности, определяет наибольшую положительную или отрицательную основную приведенную погрешность, которую имеет данный прибор. Например, для класса точности 0,5 приведенная погрешность составит ±0,5%.

Технические характеристики амперметров
Наименование параметра Амперметры Э47 Вольтметры Э47
Система электромагнитная электромагнитная
Способ вывода информации аналоговый аналоговый
Диапазон измерений 0...3000 А 0...600 В
Способ установки на панель щита на панель щита
Способ включения <50 А- непосредственный, >100 А-через трансформатор тока с вторичным током 5 А непосредственный
Класс точности 1,5 1,5
Предел допускаемой основной погрешности приборов, % ±1,5 ±1,5
Номинальное рабочее напряжение, не более 400 В 600 В
Допустимая длительная перегрузка (не более 2 ч) 120% от конечного значения диапазона измерений
Средняя наработка до отказа, не менее, ч 65000 65000
Средний срок службы, не менее, лет 8 8
Температура окружающего воздуха, °С 20±5 20±5
Частота измеряемой величины, Гц 45...65 45...65
Положение монтажной плоскости вертикальное вертикальное
Габариты, мм 72x72x73,5 96x96x73,5 72x72x73,5 96x96x73,5

Электроизмерительные приборы (амперметры и вольтметры) серии Э47

Применяются в низковольтных комплектных устройствах в распределительных электрических сетях жилых, коммерческих и производственных объектов.

Амперметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения силы тока в электрических цепях переменного тока.

Вольтметры Э47 - аналоговые электромагнитные электроизмерительные приборы - предназначены для измерения напряжения в электрических цепях переменного тока.

Широкий диапазон измерений: амперметры до 3000 А, вольтметры до 600 В. Класс точности 1.5.

Амперметры, рассчитанные на измерение токов выше 50 А подключают к измеряемой цепи через трансформатор тока с номинальным вторичным рабочим током 5 А.

Принцип действия амперметров и вольтметров серии Э47

Амперметры и вольтметры Э47 относятся к приборам с электромагнитной системой. В составе имеют круглую катушку с помещенными внутрь подвижным и неподвижным сердечниками. При протекании тока через витки катушки, создается магнитное поле, намагничивающее оба сердечника. Вследствие чего.

одноименные полюса сердечников отталкиваются, и подвижный сердечник поворачивает ось со стрелкой. Для защиты от негативного влияния внешних магнитных полей, катушка и сердечники защищены металлическим экраном.

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии поля постоянного магнита и проводников с током, а электромагнитной - на втягивании стального сердечника в неподвижную катушку при существовании в ней тока. Электродинамическая система имеет две катушки. Одна из катушек, подвижная, укрепляется на оси и располагается внутри неподвижной катушки.

Принцип действия прибора, возможность его работы в тех или иных условиях, возможные предельные погрешности прибора могут быть установлены по условным обозначениям, нанесенным на циферблат прибора.

Например: (А) - амперметр; (~) - переменный ток в пределах от 0 до 50А; () - вертикального положения, класс точности 1,0 и т.д.

Измерительные трансформаторы тока и напряжения имеют ферромагнитные магнитопроводы, на которых располагаются первичные и вторичные обмотки. Число витков вторичной обмотки всегда больше первичной.

Зажимы первичной обмотки трансформатора тока обозначают буквами Л1 и Л2 (линия), а вторичной - И1 и И2 (измерение). По правилам техники безопасности один из зажимов вторичной обмотки трансформатора тока, так же, как и трансформатора напряжения, заземляют, что делается на случай повреждения изоляции. Первичную обмотку трансформатора тока включают последовательно с объектом, у которого проводят измерения. Сопротивление первичной обмотки трансформатора тока мало по сравнению с сопротивлением потребителя. Вторичная обмотка замыкается на амперметр и токовые цепи приборов (ваттметр, счетчик и т. д.). Токовые обмотки ваттметров, счетчиков и реле рассчитывают на 5А, вольтметры, цепи напряжения ваттметров, счетчиков и обмоток реле - на 100 В.

Сопротивления амперметра и токовых цепей ваттметра невелики, поэтому трансформатор тока работает фактически в режиме короткого замыкания. Номинальный ток вторичной обмотки равен 5А. Коэффициент трансформации трансформатора тока равен отношению первичного тока к номинальному току вторичной обмотки, а у трансформатора напряжения - отношению первичного напряжения ко вторичному номинальному.

Сопротивление вольтметра и цепей напряжения измерительных приборов всегда велико и составляет не менее тысячи Ом. В связи с этим трансформатор напряжения работает в режиме холостого хода.

Показания приборов, включенных через трансформаторы тока и напряжения, необходимо умножать на коэффициент трансформации.

Трансформаторы тока ТТИ

Трансформаторы тока ТТИ предназначены: для применения в схемах учета электроэнергии при расчетах с потребителями; для применения в схемах коммерческого учета электроэнергии; для передачи сигнала измерительной информации измерительным приборам или устройствам защиты и управления. Корпус трансформатора выполнен неразборным и опломбирован наклейкой, что делает невозможным доступ ко вторичной обмотке. Клеммные зажимы вторичной обмотки закрываются прозрачной крышкой, что обеспечивает безопасность при эксплуатации. Кроме того, крышку можно опломбировать. Это особенно важно в схемах учета электроэнергии, так как позволяет исключить несанкционированный доступ к клеммным зажимам вторичной обмотки.

Встроенная медная луженая шина у модификации ТТИ-А - дает возможность подключения как медных, так и алюминиевых проводников.

Номинальное напряжениe - 660 В; номинальная частота сети - 50 Гц; класс точности трансформатора 0,5 и 0,5S; номинальный вторичный рабочий ток - 5А.

Технические характеристики трансформаторов ТТИ
Модификации трансформаторов Номинальный первичный ток трансформатора, А
ТТИ-А 5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 80; 100; 120; 125; 150; 200; 250; 300; 400; 500; 600; 800; 1000
ТТИ-30 150; 200; 250; 300
ТТИ-40 300; 400; 500; 600
ТТИ-60 600; 750; 800; 1000
ТТИ-85 750; 800; 1000; 1200; 1500
ТТИ-100 1500; 1600; 2000; 2500; 3000
ТТИ-125 1500; 2000; 2500; 3000; 4000; 5000

Электронные аналоговые приборы представляют собой сочетание различных электронных преобразователей и магнитоэлектрического прибора и служат для измерения электрических величин. Они обладают высоким входным сопротивлением (малым потреблением энергии от объекта измерения) и высокой чувствительностью. Используются для измерения в цепях повышенной и высокой частоты.

Принцип действия цифровых измерительных приборов основан на преобразовании измеряемого непрерывного сигнала в электрический код, отображаемый в цифровой форме. Достоинствами являются малые погрешности измерения (0.1-0,01 %) в широком диапазоне измеряемых сигналов и высокое быстродействие от 2 до 500 измерений в секунду. Для подавления индустриальных помех они снабжены специальными фильтрами. Полярность выбирается автоматически и указывается на отсчетном устройстве. Содержат выход на цифропечатающее устройство. Используются как для измерения напряжения и тока, так и пассивных параметров - сопротивление, индуктивность, емкость. Позволяют измерять частоту и ее отклонение, интервал времени и число импульсов.

Измерение электрических параметров является обязательным этапом при разработке и производстве изделий электроники. Для контроля качества производимых устройств требуется поэтапный контроль их параметров. Правильное определение функционала будущего контрольно-измерительного комплекса требует определения видов электрического контроля: промышленный или лабораторный, полный или выборочный, статистический или однократный, абсолютный или относительный, и так далее.

В структуре производства изделий выделяют следующие виды контроля:

  • Входной контроль;
  • Межоперационный контроль;
  • Контроль рабочих параметров;
  • Приемо-сдаточные испытания.

При производстве печатных плат и электронных узлов (область цикла приборостроения), необходимо осуществлять входной контроль качества исходных материалов и компонентов, электрический контроль качества металлизации готовых печатных плат, контроль рабочих параметров собранных электронных узлов. Для решения данных задач, на современном производстве успешно применяются системы электрического контроля адаптерного типа, а также системы с «летающими» зондами.

Изготовление компонентов в корпусе (цикл корпусированного производства), в свою очередь, потребует входного параметрического контроля отдельных кристаллов и корпусов, последующего межоперационного контроля после проведения разварки выводов кристалла или же его монтажа, и в заключении параметрический и функциональный контроль готового изделия.

Для изготовления полупроводниковых компонентов и интегральных микросхем (кристальное производство) потребуется проводить более детальный контроль электрических характеристик. Изначально необходимо провести контроль свойств пластины, как поверхностных, так и объемных, после чего рекомендуется контролировать характеристики основных функциональных слоев, а после нанесения слоев металлизации, проверять качество её исполнения и электрические свойства. Получив структуру на пластине, необходимо провести параметрический и функциональный контроль, измерение статических и динамических характеристик, проконтролировать целостность сигнала, проанализировать свойства структуры, верифицировать рабочие характеристики.

Параметрические измерения:

Параметрический анализ включает набор методик измерения и контроля достоверности параметров напряжения, тока и мощности, без контроля функционала устройства. Измерение электрических параметров подразумевает приложение электрического воздействия на измеряемое устройство (ИУ) и измерение отклика ИУ. Параметрические измерения проводятся на постоянном токе (стандартные DC измерения вольтамперных характеристик (ВАХ), измерение цепей питания и т.д.), на низких частотах (мультичестотные измерения вольтфарадных характеристик (ВФХ), измерения комплексного импеданса и иммитанса, анализ материалов и т.д.), импульсные измерения (импульсные ВАХ, отладка времени срабатывания и т.д.). Для решения задач параметрических измерений применяется большое количество специализированного контрольно-измерительного оборудования: генераторы сигналов произвольной формы, источники питания (постоянного и переменного тока), источники-измерители, амперметры, вольтметры, мультиметры, измерители LCR и импеданса, параметрические анализаторы и характериографы, и многое другое, а также большое количество аксессуаров, принадлежностей и приспособлений.

Применение:

  • Измерение базовых характеристик (ток, напряжение, мощность) электрических цепей;
  • Измерение сопротивления, емкости и индуктивности пассивных и активных элементов электрических цепей;
  • Измерение полного импиданса и иммитанса;
  • Измерение ВАХ в квазистатическом и импульсном режимах;
  • Измерение ВФХ в квазистатическом и мультичастотном режимах;
  • Характеризация полупроводниковых компонентов;
  • Анализ отказов.

Функциональные измерения:

Функциональный анализ включает набор методик измерения и контроля характеристик устройства при выполнении основных операций. Данные методики позволяют построить модель (физическую, компактную или поведенческую) устройства, основываясь на данных, полученных в процессе измерений. Анализ полученных данных позволяет контролировать стабильность характеристик производимых приборов, исследовать их и разрабатывать новые, отлаживать технологические процессы и корректировать топологию. Для решения задач функциональных измерений применяется большое количество специализированного контрольно-измерительного оборудования: осциллографы, анализаторы цепей, частотомеры, измерители шума, измерители мощности, анализаторы спектра, детекторы и многие другие, а также большое количество аксессуаров, принадлежностей и приспособлений.

Применение:

  • Измерение слабых сигналов: параметры передачи и отражения сигналов, контроль манипуляции;
  • Измерение сильных сигналов: компрессия коэффициента усиления, измерения Load-Pull и т.д.;
  • Генерация и преобразование частоты;
  • Анализ формы сигнала во временной и частотной областях;
  • Измерение коэффициента шума и анализ параметров шума;
  • Верификация чистоты сигнала и анализ интермодуляционных искажений;
  • Анализ целостности сигнала, стандартизация;

Зондовые измерения:

Следует отдельно выделить зондовые измерения. Активное развитие микро- и наноэлектроники привело к необходимости проведения точных и надежных измерений на пластине, возможных только при осуществлении качественного, стабильного и надежного контакта, не разрушающего ИУ. Решение данных задач достигается за счет применения зондовых станций, специально спроектированных под конкретный вид измерений, осуществляющих зондовый контроль. Станции проектируются специализированно, для исключения внешних воздействий, собственных шумов и сохранения «чистоты» эксперимента. Всё измерения приводятся на уровне пластин/осколков, до её разделения на кристаллы и корпусирования.

Применение:

  • Измерение концентрации носителей заряда;
  • Измерение поверхностного и объемного сопротивления;
  • Анализ качества полупроводниковых материалов;
  • Проведение параметрического контроля на уровне пластины;
  • Поведение функционального анализа на уровне пластины;
  • Проведение измерений и контроля электрофизических параметров (см.ниже) полупроводниковых приборов;
  • Контроль качества технологических процессов.

Радиоизмерения:

Измерение радиоизлучений, электромагнитной совместимости, поведение сигнала приемо-передающих устройств и антенно-фидерных систем, а также их помехоустойчивости требуют особых внешних условий проведения эксперимента. RF измерения требуют отдельного подхода. Своё влияние вносят не только характеристики приемника и передатчика, но и внешняя электромагнитная обстановка (не исключая взаимодействия временных, частотных и мощностных характеристик, и кроме того расположение всех элементов системы относительно друг друга, и конструкция активных элементов).

Применение:

  • Радиолокация и пеленгация;
  • Телекоммуникация и системы связи;
  • Электромагнитная совместимость и помехозащищенность;
  • Анализ целостности сигнала, стандартизация.

Электрофизические измерения:

Измерение электрических параметров зачастую плотно взаимодействует с измерением/воздействием физических параметров. Электрофизические измерения применяются для всех приборов, преобразующих какое-либо внешнее воздействие в электрическую энергию и/или наоборот. Светодиоды, микроэлектромеханические системы, фотодиоды, датчики давления, потока и температуры, а также все приборы на их основе, требуют качественного и количественного анализа взаимодействия физических и электрических характеристик приборов.

Применение:

  • Измерение интенсивности, длин волн и направленности излучения, ВАХ, светового потока и, спектра светодиода;
  • Измерение чувствительности и шумов, ВАХ, спектральной и световой характеристик фотодиодов;
  • Анализ чувствительности, линейности, точности, разрешения, пороговых значений, люфта, шума, переходной характеристики и выхода по энергии для МЕМС актуаторов и сенсоров;
  • Анализ характеристик полупроводниковых приборов (таких как МЭМС актуаторы и сенсоры) в вакууме и в камере высокого давления;
  • Анализ характеристик температурных зависимостей, критических токов и влияния полей в сверхпроводниках.

Основными параметрами элек­трических цепей являются: для цепи постоянного тока со­противление R , для цепи переменного тока активное сопро­тивление , индуктивность , емкость, комплексное сопротивление .

Наиболее часто для измерения этих параметров приме­ няют следующие методы: омметра, амперметра - вольтмет­ра, мостовой. Применение компенсаторов для измерения со­ противлений уже рассматривалось в п. 4.1.8. Рассмотримдругие методы.

Омметры. Непосредственно и быстро сопротивле­ния элементов цепи постоянного тока можно измерить при помощи омметра. В схемах, представленных на рис. 16 ИМ - магнитоэлектрический измерительный механизм.

При неизменном значении напряжения питания
пока­зания измерительного механизма зависят только от зна­чения измеряемого сопротивления
. Следовательно, шкала может быть отградуирована в единицах сопротивления.

Для последовательной схемы включения элемента с со­противлением
(Рис. 4.16,) угол отклонения стрелки

,

Для параллельной схемы включения (Рис. 4.16, )


,

где - чувствительность магнитоэлектрического измери­тельного механизма; - сопротивление измерительного механизма;
- сопротивление добавочного резисто­ра. Так как значения всех величин в правой части вышеприведённых уравнений, кроме
, то угол отклонения определяется зна­чением
.

Шкалы омметров для обеих схем включе­ния неравномерные. В последователь­ной схеме включения, в отличие от па­раллельной, нуль шкалы совмещен с максимальным углом поворота под­вижной части. Омметры с последова­тельной схемой включения более при­годны для измерения больших сопро­тивлений, а с параллельной схемой - малых. Обычно ом­метры выполняют в виде переносных приборов классов точ­ности 1,5 и 2,5. В качестве источника питания применя­ют батарею. Необходимость установки нуля при помощи корректора является крупным недостатком рассмотренных омметров. Этот недостаток отсутствует у омметров с маг­нитоэлектрическим логометром.

Схема включения логометра в омметре представлена на рис. 4.17. В этой схеме 1 и 2 - катушки логометра (их со­противления и);
и
- добавочные резисторы,постоянно включенные в схему.

,

то отклонение стрелки логометра

,

т. е. угол отклонения определяется значением
и не за­висит от напряжения .

Омметры с логометром имеют различные конструкции в зависимости от требуемого предела измерения, назначе­ния (щитовой или переносной прибор) и т. п.

Метод амперметра - вольтметра . Этот метод яв­ляется косвенным методом измерения сопротивления эле­ментов цепей постоянного и переменного токов. Ампермет­ром и вольтметром измеряются соответственно ток и на­пряжение на сопротивлении
значение которого затемрассчитывается по закону Ома:
. Точность опреде­ления сопротивлений этим методом зависит как от точно­сти приборов, так и от применяемой схемы включения (рис. 4.18, и).

При измерении относительно небольших сопротивле­ний (менее 1 Ом) схема на рис. 4.18, предпочтительнее,так как вольтметр подключен непосредственно к измеряе­мому сопротивлению
, а ток, измеряемый ампермет­ром, равен сумме тока в измеряемом сопротивлении и тока в вольтметре , т. е.
. Так как>>, то
.

При измерении относительно больших сопротивлений (более 1 Ом) предпочтительнее схема на рис. 4.18, , таккак амперметр непосредственно измеряет ток в сопротив­лении
, а напряжение , измеряемое вольтметром, рав­но сумме напряжений на амперметре
и измеряемом сопротивлении
, т. е.
. Так как
>>
, то
.

Принципиальные схемы включения приборов для изме­рения полного сопротивления элементов
цепи перемен­ного тока методом амперметра - вольтметра те же, что и для измерения сопротивлений
. В этом случае по изме­ренным значениям напряжения и тока определяют пол­ное сопротивление
.

Очевидно, что этим методом нельзя измерить аргумент поверяемого сопротивления. Поэтому методом ампермет­ра - вольтметра можно измерять индуктивности катушек и емкости конденсаторов, потери в которых достаточно ма­лы. В этом случае

;
.

Объектами электрических измерений являются все электрические и магнитные величины: ток, напряжение, мощность, энергия, магнитный поток и т. д. Определение значений этих величин необходимо для оценки работы всех электротехнических устройств, чем и определяется исключительная важность измерений в электротехнике.

Электроизмерительные устройства широко применяются и для измерения неэлектрических величин (температуры, давления и т. д.), которые для этой цели преобразуются в пропорциональные им. электрические величины. Такие методы измерений известны под общим названием электрических измерений неэлектрических величин. Применение электрических методов измерений дает возможность относительно просто передавать показания приборов на дальние расстояния (телеизмерение), управлять машинами и аппаратами (автоматическое регулирование), выполнять автоматически математические операции над измеряемыми величинами, просто записывать (например, на ленту) ход контролируемых процессов и т. д. Таким образом, электрические измерения необходимы при автоматизации самых различных производственных процессов.

В Советском Союзе развитие электроприборостроения идет параллельно с развитием электрификации страны и особенно быстро после Великой Отечественной войны. Высокое качество аппаратуры и необходимая точность измерительных приборов, находящихся в эксплуатации, гарантируются государственным надзором за всеми мерами и измерительными приборами.

12.2 Меры, измерительные приборы и методы измерения

Измерение любой физической величины заключается в ее сравнении посредством физического эксперимента с принятым за единицу значением соответствующей физической величины. В общем случае для такого сопоставления измеряемой величины с мерой - вещественным воспроизведением единицы измерения - нужен прибор сравнения. Например, образцовая катушка сопротивления применяется как мера сопротивления совместно с прибором сравнения - измерительным мостом.

Измерение существенно упрощается, если есть прибор непосредственного отсчета (называемый также показывающим прибором), показывающий численное значение измеряемой величины непосредственно на шкале или циферблате. Примерами могут служить амперметр, вольтметр, ваттметр, счетчик электрической энергии. При измерении таким прибором мера (например, образцовая катушка сопротивления) не нужна, но мера была нужна при градуировании шкалы этого прибора. Как правило, у приборов сравнения выше точность и чувствительность, но измерение приборами непосредственного отсчета проще, быстрее и дешевле.

В зависимости от того, как получаются результаты измерения, различают измерения прямые, косвенные и совокупные.

Если результат измерения непосредственно дает искомое значение исследуемой величины, то такое измерение принадлежит к числу прямых, например измерение тока амперметром.

Если измеряемую величину приходится определять на основании прямых измерений других физических величин, с которыми измеряемая величина связана определенной зависимостью, то измерение относится к косвенным. Например, косвенным будет измерение, сопротивления элемента электрической цепи при измерении напряжения вольтметром и тока амперметром.

Следует иметь в виду, что при косвенном измерении возможно существенное снижение точности по сравнению с точностью при прямом измерении из-за сложения погрешностей прямых измерений величин, входящих в расчетные уравнения.

В ряде случаев конечный результат измерения выводился из результатов нескольких групп прямых или косвенных измерений отдельных величин, причем исследуемая величина зависит от измеренных величин. Такое измерение называют совокупным. Например, к совокупным измерениям относится определение температурного коэффициента электрического сопротивления материала на основании измерения сопротивления материала при различных температурах. Совокупные измерения характерны для лабораторных исследований.

В зависимости от способа применения приборов и мер принято различать следующие основные методы измерения: непосредственного измерения, нулевой и дифференциальный.

При пользовании методом непосредственного измерения (или непосредственного отсчета) измеряемая величина определяется путем

непосредственного отсчета показания измерительного прибора или непосредственного сравнения с мерой данной физической величины (измерение тока амперметром, измерение длины метром). В этом случае верхним пределом точности измерения является точность измерительного показывающего прибора, которая не может быть очень высокой.

При измерении нулевым методом образцовая (известная) величина (или эффект ее действия) регулируется и значение ее доводится до равенства со значением измеряемой величины (или эффектом ее действия). При помощи измерительного прибора в этом случае лишь добиваются равенства. Прибор должен быть высокой чувствительности, и он именуется нулевым прибором или нуль-индикатором. В качестве нулевых приборов при постоянном токе обычно применяются магнитоэлектрические гальванометры (см. § 12.7), а при переменном токе - электронные нуль-индикаторы. Точность измерения нулевым методом очень высока и в основном определяется точностью образцовых мер и чувствительностью нулевых приборов. Среди нулевых методов электрических измерений важнейшими являются мостовые и компенсационные.

Еще большая точность может быть достигнута при дифференциальных методах измерения. В этих случаях измеряемая величина уравновешивается известной величиной, но до полного равновесия измерительная цепь не доводится, а путем прямого отсчета измеряется разность измеряемой и известной величин. Дифференциальные методы применяются для сравнения двух величин, значения которых мало отличаются один от другого.


5. Техническое обслуживание линейных сооружений
5.1. Общие положения
5.2. Осмотр и профилактическое обслуживание линейно-кабельных сооружений
5.3. Осмотр и профилактическое обслуживание воздушных линий
5.4. Измерения электрических характеристик кабельных, воздушных и смешанных линий
5.5. Проверка новых кабелей, проводов, оконечных кабельных устройств и арматуры, поступающих в эксплуатацию
6. Устранение повреждений кабельных,воздушных и смешанных линий
6.1. Организация работ по устранению аварий и повреждений линий
6.2. Методы отыскания и устранения повреждений кабельных линий
6.2.1. Общие указания
Правила обслуживания и ремонта кабелей связи
5.4. Измерения электрических характеристик кабельных, воздушных и смешанных линий

5.4.1. Измерение электрических характеристик кабельных, воздушных и смешанных линий местных сетей связи проводят с целью проверки соответствия характеристик установленным нормам и предупреждения аварийного состояния.

5.4.2. Электрические измерения линий проводятся измерительной группой предприятия связи в соответствии с действующими "Руководствами" по электрическим измерениям линий ГТС и СТС.

5.4.3. Измерительная группа выполняет следующие виды электрических измерений линий:

Плановые (периодические);

Измерения по определению мест повреждений;

Контрольные измерения, проводимые после выполнения ремонтных и восстановительных работ;

Измерения при приемке в эксплуатацию вновь построенных и реконструированных линий;

Измерения по уточнению трассы кабельной линии и глубины залегания кабеля;

Измерения для проверки качества изделий (кабелей, проводов, разрядников, предохранителей, плинтов, боксов, коммутационных коробок, изоляторов и т.п.), поступающих от промышленности, перед установкой (монтажом) их на линиях.

Виды измеряемых параметров и объемы плановых, контрольных и приемо-сдаточных измерений электрических характеристик кабельных, воздушных и смешанных линий местных сетей связи приведены в указанных в п. 5.4.2. "Руководствах".

5.4.4. Измеренные электрические характеристики кабельных, воздушных и смешанных линий местных сетей связи должны соответствовать нормам, приведенным в Приложении 4 .

5.4.5. Результаты плановых, контрольных и аварийных измерений электрических характеристик линий служат исходными данными при определении состояния линейных сооружений и основанием при разработке планов текущего и капитального ремонта и проектов реконструкции сооружений.