Проводимости

Комплексной проводимостью называется отношение комплексного тока к комплексному напряжению

где y=1/z - величина обратная полному сопротивлению, называется полной проводимостью .
Комплексная проводимость и комплексное сопротивление взаимно обратны. Комплексную проводимость можно представить в виде

где - действительная часть комплексной проводимости, называется активной проводимостью ; - значение мнимой части комп-лексной проводимости, называется реактивной проводимостью ;

Из () и ( 3.29) следует, что для схемы, представленной на рис. 3.12 , комплексная проводимость

где


и называются соответственно
активной, индуктивной и емкостной проводимостями .
Реактивная проводимость


Индуктивная и емкостная проводимости - арифметические величины, а реактивная проводимость b - алгебраическая величина и может быть как больше, так и меньше нуля. Реактивная проводимость b ветви, содержащей только индуктивность, равна индуктивной проводимости , а реактивная проводимость b ветви, содержащей только емкость, равна емкостной проводимости с обратным знаком, т. е. .


Сдвиг по фазе между напряжением и током зависит от соотношения индуктивной и емкостной проводимостей. Для схемы по на рис. 3.14 представлены векторные диаграммы для трех случаев, а именно
При построении этих диаграмм начальная фаза напряжения принята равной нулю, поэтому , как это следует из ( 3.28), равны и противоположны по знаку ().
Рассматривая схему на рис. 3.12 в целом как пассивный двухполюсник, можно заметить, что при заданной частоте она эквивалентна в первом случае параллельному соединению сопротивления и индуктивности, во втором - сопротивлению и в третьем - параллельному соединению сопротивления и емкости. Второй случай называется резонансом. При заданных
L и С соотношение между зависит от частоты, а поэтому от частоты зависит и вид эквивалентной схемы.
Обратим внимание на то, что в схеме рис. 3.12 каждая из параллельных ветвей содержит по одному элементу. Поэтому получилось такое простое выражение для У, в которое проводимости элементов входят как отдельные слагаемые.
Заметим, что обозначения
применяются не только для сопротивлений и проводимостей, но и для элементов схемы, характеризуемых этими величинами. В таких случаях элементам схемы дают те же самые наименования, какие присвоены величинам, которые обозначаются этими буквами. Комплексные сопротивления или проводимости как элементы схемы имеют условное обозначение в виде прямоугольника (см. рис. 3.1). Точно так же обозначают реактивные сопротивления или проводимости, если хотят отметить, что они могут быть как индуктивными, так и емкостными сопротивлениями или проводимостями.

На рис. 14.14, а параллельно соединены те же элементы цепи, которые были рассмотрены (см. рис. 14.7, а). Предположим, что для этой цепи известны напряжение u = U m sinωt . и параметры элементов цепи R, L, С. Требуется найти токи в цепи и мощность.

Векторная диаграмма для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Для мгновенных величин в соответствии с первым законом Кирхгофа уравнение токов

Представляя ток в каждой ветви суммой активной и реактивной составляющих, получим

Для действующих токов нужно написать векторное уравнение

Численные значения векторов токов определяются произведением напряжения и проводимости соответствующей ветви.

На рис. 14.14, б построена векторная диаграмма, соответствующая этому уравнению. За исходный вектор принят, как обычно при расчете цепей с параллельным соединением ветвей, вектор напряжения U, а затем нанесены векторы тока в каждой ветви, причем направления их относительно вектора напряжения выбраны в соответствии с характером проводимости ветвей. Начальной точкой при построении диаграммы токов выбрана точка, совпадающая с началом вектора напряжения. Из этой точки проведен вектор l 1a активного тока ветви I (по фазе совпадает c напряжением), а из конца его проведен вектор I 1p реактивного тока той же ветви (опережает напряжение на 90°). Эти два вектора являются составляющими вектора I 1 тока первой ветви . Далее в том же порядке отложены векторы токов других ветвей. Следует обратить внимание на то, что проводимость ветви 3-3 активная , поэтому реактивная составляющая тока в этой ветви равна нулю. В ветвях 4-4 и 5-5 проводимости реактивные , поэтому в составе этих токов нет активных составляющих.

Расчетные формулы для цепи с параллельным соединением ветвей. Метод векторных диаграмм

Из векторной диаграммы видно, что все активные составляющие векторов тока направлены одинаково - параллельно вектору напряжения, поэтому векторное сложение их можно заменить арифметическими найти активную составляющую общего тока: I а = I 1a + I 2a + I 3a .

Реактивные составляющие векторов токов перпендикулярны вектору напряжения, причем индуктивные токи направлены в одну сторону, а емкостные - в другую. Поэтому реактивная составляющая общего тока в цепи определяется их алгебраической суммой, в которой индуктивные токи считаются положительными, а емкостные - отрицательными: I p = — I 1p + I 2p — I 4p + I 5p .

Векторы активного, реактивного и полного тока всей цепи образуют прямоугольный треугольник, из которого следует

Следует обратить внимание на возможные ошибки при определении полной проводимости цепи по известным проводимостям отдельных ветвей: нельзя складывать арифметически проводимости ветвей, если токи в них не совпадают по фазе.

Полную проводимость цепи в общем случае определяют как гипотенузу прямоугольного треугольника, катетами которого являются выраженные в определенном масштабе активная и реактивная проводимости всей цепи:

От треугольника токов можно перейти также к треугольнику мощностей и для определения мощности получить известные уже формулы

Активную мощность цепи можно представить как арифметическую сумму активных мощностей ветвей.

Реактивная мощность цепи равна алгебраической сумме мощностей ветвей. В этом случае индуктивная мощность берется положительной, а емкостная - отрицательной:

Расчет цепи без определения проводимостей ветвей

Расчет электрической цепи при параллельном соединении ветвей можно выполнить без предварительного определения активных и реактивных проводимостей , т. е. представляя элементы цепи в схеме замещения их активными и реактивными сопротивлениями (рис. 14.15, а).

Определяют токи в ветвях по формуле (14.4);

где Z 1 , Z 2 и т. д. - полные сопротивления ветвей.

Полное сопротивление ветви, в которую входят несколько элементов, соединенных последовательно, определяют по формуле (14.5).

Для построения векторной диаграммы токов (рис. 14.15, б) можно определить активную и реактивную составляющие тока каждой ветви по формулам

и т. д. для всех ветвей.

В этом случае отпадает необходимость определения углов ф 1 ф 2 и построения их на чертеже.

Ток в неразветвленной части цепи

. Конденсатор (идеальная емкость)

Аналогичный характер имеют процессы и для идеальной емкости. Здесь . Поэтому из (3) вытекает, что. Таким образом, в катушке индуктивности и конденсаторе активная мощность не потребляется (Р=0), так как в них не происходит необратимого преобразования энергии в другие виды энергии. Здесь происходит только циркуляция энергии: электрическая энергия запасается в магнитном поле катушки или электрическом поле конденсатора на протяжении четверти периода, а на протяжении следующей четверти периода энергия вновь возвращается в сеть. В силу этого катушку индуктивности и конденсатор называют реактивными элементами, а их сопротивления Х L и Х С, в отличие от активного сопротивления R резистора, – реактивными.

Интенсивность обмена энергии принято характеризовать наибольшим значением скорости поступления энергии в магнитное поле катушки или электрическое поле конденсатора, которое называется реактивной мощностью .

В общем случае выражение для реактивной мощности имеет вид:

Она положительна при отстающем токе (индуктивная нагрузка- ) и отрицательна при опережающем токе (емкостная нагрузка-). Единицу мощности в применении к измерению реактивной мощности называютвольт-ампер реактивный (ВАр).

В частности для катушки индуктивности имеем: , так как.

.

Из последнего видно, что реактивная мощность для идеальной катушки индуктивности пропорциональна частоте и максимальному запасу энергии в катушке. Аналогично можно получить для идеального конденсатора:

.

Резистор (идеальное активное сопротивление).

Здесь напряжение и ток (см. рис. 2) совпадают по фазе , поэтому мощностьвсегда положительна, т.е. резистор потребляет активную мощность

25. Активная, реактивная и полная проводимость цепи.

При параллельном соединении элементов R , L , C (рис. 1) полная проводимость равна
(1)

где g = 1/ R – активная проводимость цепи;

b – реактивная проводимость цепи.

Реактивная проводимость цепи при этом определяется выражением
(2)

Ток в цепи определяется выражением

(3)

Ток в активной проводимости совпадает с напряжением по фазе

(4)

Ток в ёмкости определяет напряжение по фазе на 90 0

(5)

Ток в индуктивности отстаёт от напряжения по фазе на 90 0

(6)

Средняя активность мощность, расходуемая в цепи

(7)

Сдвиг фаз между напряжением U на зажимах цепи и током I в ней определяется выражениями

(8)

(9)

26. Переходные процессы в линейных электрических цепях. Основные понятия, законы коммуникации.

При всех изменениях в электрической цепи: включении, выключении, коротком замыкании, колебаниях величины какого-либо параметра и т.п. – в ней возникают переходные процессы, которые не могут протекать мгновенно, так как невозможно мгновенное изменение энергии, запасенной в электромагнитном поле цепи. Таким образом, переходный процесс обусловлен несоответствием величины запасенной энергии в магнитном поле катушки и электрическом поле конденсатора ее значению для нового состояния цепи.При переходных процессах могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые могут нарушить работу устройства вплоть до выхода его из строя. С другой стороны, переходные процессы находят полезное практическое применение, например, в различного рода электронных генераторах. Все это обусловливает необходимость изучения методов анализа нестационарных режимов работы цепи.

Основные методы анализа переходных процессов в линейных цепях:

    Классический метод, заключающийся в непосредственном интегрировании дифференциальных уравнений, описывающих электромагнитное состояние цепи.

    Операторный метод, заключающийся в решении системы алгебраических уравнений относительно изображений искомых переменных с последующим переходом от найденных изображений к оригиналам.

    Частотный метод, основанный на преобразовании Фурье и находящий широкое применение при решении задач синтеза.

    Метод расчета с помощью интеграла Дюамеля, используемый при сложной форме кривой возмущающего воздействия.

    Метод переменных состояния, представляющий собой упорядоченный способ определения электромагнитного состояния цепи на основе решения системы дифференциальных уравнений первого прядка, записанных в нормальной форме (форме Коши).

Законы коммутации

Название закона

Формулировка закона

Первый закон коммутации (закон сохранения потокосцепления)

Магнитный поток, сцепленный с катушками индуктивности контура, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Второй закон коммутации (закон сохранения заряда)

Электрический заряд на конденсаторах, присоединенных к любому узлу, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Доказать законы коммутации можно от противного: если допустить обратное, то получаются бесконечно большие значения и, что приводит к нарушению законов Кирхгофа.

На практике, за исключением особых случаев (некорректные коммутации), допустимо использование указанных законов в другой формулировке, а именно:

первый закон коммутации – в ветви с катушкой индуктивности ток в момент

.

второй закон коммутации – напряжение на конденсаторе в момент

коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .

Необходимо подчеркнуть, что более общей формулировкой законов коммутации является положение о невозможности скачкообразного изменения в момент коммутации для схем с катушкой индуктивности – потокосцеплений, а для схем с конденсаторами – зарядов на них. В качестве иллюстрации сказанному могут служить схемы на рис. 2, переходные процессы в которых относятся к так называемым некорректным коммутациям (название произошло от пренебрежения в подобных схемах малыми параметрами, корректный учет которых может привести к существенному усложнению задачи).

Действительно, при переводе в схеме на рис. 2,а ключа из положения 1 в положение 2 трактование второго закона коммутации как невозможность скачкообразного изменения напряжения на конденсаторе приводит к невыполнению второго закона Кирхгофа . Аналогично при размыкании ключа в схеме на рис. 2,б трактование первого закона коммутации как невозможность скачкообразного изменения тока через катушку индуктивности приводит к невыполнению первого закона Кирхгофа. Для данных схем, исходя из сохранения заряда и соответственно потокосцепления, можно записать:

Зависимыми начальными условиями называются значения остальных токов и напряжений, а также производных от искомой функции в момент коммутации, определяемые по независимым начальным условиям при помощи уравнений, составляемых по законам Кирхгофа для . Необходимое число начальных условий равно числу постоянных интегрирования. Поскольку уравнение вида (2) рационально записывать для переменной, начальное значение которой относится к независимым начальным условиям, задача нахождения начальных условий обычно сводится к нахождению значений этой переменной и ее производных до (n-1) порядка включительно при.

Проводимости

Комплексной проводимостью называется отношение комплексного тока к комплексному напряжению

где y=1/z - величина обратная полному сопротивлению, называется полной проводимостью.

Комплексная проводимость и комплексное сопротивление взаимно обратны. Комплексную проводимость можно представить в виде

где - действительная часть комплексной проводимости, называется активной проводимостью; - значение мнимой части комп-лексной проводимости, называется реактивной проводимостью;

Из (3.30) и ( 3.29) следует, что для схемы, представленной на рис. 3.12 , комплексная проводимость

и называются соответственно активной, индуктивной и емкостной проводимостями.

Реактивная проводимость

Индуктивная и емкостная проводимости - арифметические величины, а реактивная проводимость b - алгебраическая величина и может быть как больше, так и меньше нуля. Реактивная проводимость b ветви, содержащей только индуктивность, равна индуктивной проводимости , а реактивная проводимость b ветви, содержащей только емкость, равна емкостной проводимости с обратным знаком, т. е. .

Сдвиг по фазе между напряжением и током зависит от соотношения индуктивной и емкостной проводимостей. Для схемы по рис. 3.12 на рис. 3.14 представлены векторные диаграммы для трех случаев, а именно При построении этих диаграмм начальная фаза напряжения принята равной нулю, поэтому , как это следует из ( 3.28), равны и противоположны по знаку ().

Рассматривая схему на рис. 3.12 в целом как пассивный двухполюсник, можно заметить, что при заданной частоте она эквивалентна в первом случае параллельному соединению сопротивления и индуктивности, во втором - сопротивлению и в третьем - параллельному соединению сопротивления и емкости. Второй случай называется резонансом. При заданных L и С соотношение между зависит от частоты, а поэтому от частоты зависит и вид эквивалентной схемы.

Обратим внимание на то, что в схеме рис. 3.12 каждая из параллельных ветвей содержит по одному элементу. Поэтому получилось такое простое выражение для У, в которое проводимости элементов входят как отдельные слагаемые.

Заметим, что обозначения применяются не только для сопротивлений и проводимостей, но и для элементов схемы, характеризуемых этими величинами. В таких случаях элементам схемы дают те же самые наименования, какие присвоены величинам, которые обозначаются этими буквами. Комплексные сопротивления или проводимости как элементы схемы имеют условное обозначение в виде прямоугольника (см. рис. 3.1). Точно так же обозначают реактивные сопротивления или проводимости, если хотят отметить, что они могут быть как индуктивными, так и емкостными сопротивлениями или проводимостями.

Рассмотрим известное выражение для полной комплексной мощности

Таким образом, использование понятия о сопряженном комплексе тока позволяет реализовать аргумент полной комплексной мощности в виде разности фаз между синусоидами напряжения и тока (), а также установить корректную математическую связь между полной комплексной мощностью и ее составляющими (). Проведем преобразование с сопряженными комплексами. В соответствии с (13) получим

В таком случае будем иметь

Учтем, что

То есть для любого параметра произведение комплекса на сопряженный комплекс равно квадрату его модуля.

В соответствии с (27), (28) и (8) рассмотрим полную комплексную мощность

Треугольники мощностей, соответствующие выражению (29), приведены на рис. 9, 10, 11, которые иллюстрируют случаи:

– если , в этом случае , (рис. 9). Т. е. реактивная мощность всей цепи является положительной величиной и во внешней цепи происходит обмен циркулирующей энергией исключительно между магнитным полем L -элемента и источником питания, а перезаряд С -элемента полностью осуществляется за счёт энергии магнитного поля L - элемента;

– если , в этом случае , (рис. 10). Т. е. реактивная мощность всей цепи является отрицательной величиной и во внешней цепи происходит обмен циркулирующей энергией исключительно между электрическим полем С -элемента и источником питания. Энергия в магнитное поле L -элемента полностью поступает при разряде С -элемента;

– наконец, если , в этом случае , а (рис. 11). Т. е. обмена энергией между источником питания и цепью не происходит. Вся энергия, поступающая от источника, безвозвратно потребляется цепью. При этом полная мощность на зажимах цепи чисто активная. Внутри цепи происходит циркулирующий обмен энергией одинаковой интенсивности между полями L , C -элементов.

Расчёт параметров режима работы цепи, построение векторной диаграммы, треугольников проводимостей и мощностей можно провести, не прибегая к комплексным числам. Расчёт проводят в действующих значениях параметров режима и в модулях параметров цепи. При этом возможны две методики расчёта:

· с использованием понятия об активной и реактивной составляющих тока в каждой ветви;

· с использованием понятия о полной проводимости цепи, ветви и составляющих этих проводимостей.

По первой методике, по известным параметрам цепи определяют полные сопротивления ветвей

Затем определяют полные токи в каждой ветви и составляющие этих токов

После чего определяют полный (входной) ток цепи

и его фазовый угол



Рассчитывают мощности на ветвях

мощности на всей схеме

Используя полученные результаты, определяют проводимости ветвей и всей схемы

Наконец, по полученным результатам с учётом знаков φ 1 , φ 2 и φ строят векторные диаграммы токов, проводимостей и мощностей.

По второй методике, по известным параметрам цепи определяют проводимости ветвей и их фазовые углы

Затем определяют полную проводимость цепи и ее фазовый угол

После чего рассчитывают токи в ветвях и входной ток

Определяют мощности ветвей и всей цепи

И, наконец, зная величину и их знаки, строят векторные диаграммы токов, проводимостей и мощностей.

Иного характера расчёты проводят, если известны некоторые параметры режима работы цепи, и требуется определить параметры схемы замещения и построить векторную диаграмму. Такие расчёты проводят после экспериментального исследования схемы.

Например, дана схема замещения цепи (рис. 12). Путём эксперимента измерили следующие параметры режима работы этой цепи: P – активную мощность всей цепи; U – напряжение на зажимах цепи; I – входной ток; I 1 и I 2 – токи ветвей; угол сдвига фаз между синусоидами напряжения и тока (с учетом его знака). Необходимо определить параметры схемы и построить векторную диаграмму. Проводят следующие расчёты:

1. Определяют эквивалентные параметры всей цепи (знак общей реактивной проводимости и общего реактивного сопротивления определяется знаком измеренного угла )

2. Определяют эквивалентные параметры каждой ветви

3. Определяют параметры элементов ветвей схемы

4. Рассчитывают остальные параметры режима работы схемы

5. Строят векторные диаграммы токов, проводимостей, мощностей.

В данной цепи, как и в цепи с последовательным соединением R , L , C- элементов, возможен резонансный режим, который носит название резонанса токов . При резонансе токов в цепи, содержащей L и С- элементы, включённые в параллельные ветви, синусоиды входного тока I и напряжения , приложенного к зажимам цепи, совпадают по фазе, т. е. . Особенности этого режима уже рассмотрены (рис. 4, 8, 11). Определим резонансную частоту в цепи (рис. 1). Если для резонанса токов то в соответствии с (11)

Выражение (34) определяет условие резонанса токов для конкретной цепи. Если катушка индуктивности и конденсатор включены в параллельные ветви, то модули реактивных проводимостей ветвей должны быть равны.

Подставив эти выражения в (34) и решив уравнение относительно , получим

Выражение (35) показывает, что резонансная частота определяется величиной четырёх параметров цепи L , C , R 1 , R 2 . Поэтому резонансного режима можно добиться, варьируя каждый из указанных параметров.

Проанализируем зависимости параметров контура и параметров режима его работы от изменения C на примере схемы рис. 12. Считаем, что величина ёмкости С изменяется от 0 до , а цепь подключена к идеальному источнику синусоидальной ЭДС.