Данная статья является вашим путеводителем в мире транспортных средств, которые используют водород в качестве топлива. Мы рассмотрим водород как альтернативный источник топлива со стороны науки, практичности применения, а также экономики и экономии.

К концу десятилетия, транспортные средства, перемещающиеся на водороде, от таких производителей как GM, Honda, Hyundai, Mercedes-Benz и Toyota, должны понемногу появляться в дилерских сетях. Они будут надежны и универсальны, хотя и будут стоить целое состояние, плюс ко всему заправить их будет очень нелегко. Очевидно, что для топливных элементов из водорода существует много препятствий, которые нужно преодолеть, чтобы проложить путь к потребителям. Ниже приведена схема, как получается топливный элемент .


КАК РАБОТАЕТ ТОПЛИВНЫЙ ЭЛЕМЕНТ И ВООБЩЕ, ЧТО ЭТО ТАКОЕ?

Прокачивая кислород и водород через катоды и аноды, которые находятся в контакте с платиновым катализатором, происходит химическая реакция, в результате которой мы получаем воду и электрический ток. Набор из нескольких элементов (ячеек) необходим для того, чтобы увеличить заряд в 0,7 вольт в одной ячейке, что приведет к более высокому, более полезному напряжению. Топливные элементы могут быть до 80 процентов эффективнее обыкновенного бензина. Кроме того, даже уже существующие и активно применяемые современные альтернативные источники топлива в автомобилях типа растительного масла (об этом подробней ) или природного газа, не так эффективны как водородное топливо , ввиду того что они не возобновляемы.

ГДЕ МЫ ВОЗМЕМ ВОДОРОД ДЛЯ АВТОМОБИЛЬНОГО ТОПЛИВА?

Революция топливных элементов не может начаться без достаточного количества АЗС, поэтому заметное отсутствие данной инфраструктуры по-прежнему затравливает развитие водорода как альтернативного вида топлива. Хотим отметить, что в данной статье мы будем говорить больше об американском рынке водородного топлива, ибо в России, об этом , пока и речи быть не может. Слишком велико лоббирование нефтяных интересов власть имущими. Так вот, старые оправдания уже давно перестали удовлетворять пытливые умы американцев. Все они видят общественные транспортные средства передвигающиеся на топливных элементах, такие как Honda FCX Clarity, которые каждый день перевозят людей на работу и с работы. Так почему же до сих пор нет заправочных станций?

В России похожая ситуация происходит с метановыми заправками. В небольших городах таких заправок существует 1-2 штуки, в результате чего к ним выстраиваются сумасшедшие очереди из маршрутных такси и небольших грузовых автомобилей. Мешает развитию метановых заправок опять же нефтяное лобби. В Америке же причина задержки развития инфраструктуры заправок с водородным топливом немного другая. Об этом далее.

Рядовому Американцу, в зависимости от того, где он живет, возможно, придется немного подождать появления водородных заправочных станций. Еще пять лет назад общественное мнение сходилось на том, что «водородные автомобильные дороги» будут стимулировать будущее, что в США уже планируется посторенние станций вдоль Калифорнийского побережья, от Мэна до Майами.

Просто добавь воды. Солнечные водородные станции компании Honda используют энергию солнца и электролизер для того, чтобы отделить «Н» от «О» в Н2О. После отделения водород хранится в баке под давлением в 34.47 МПа (мегапаскаль). Используя только солнечную энергию, станция может производить около 5 700 литров водорода ежегодно (этого топлива практически достаточно для одного автомобиля на год). При подключении к электрической сети, станция может производить до 26 тысяч литров в год .

Теперь появилась новая идея: создать скопление станций в одном месте для обслуживания достаточно большого района. Использование такого плана предполагает развитие данного рыночного сегмента вблизи от заправочных станций, и делает водород более привлекательным видом топлива для потенциального покупателя автомобиля.

То, откуда вы будете брать водородное топливо, также будет зависеть от того, где вы живете и какие ресурсы вам доступны. В ближайшем будущем, АЗС будут заправлять автомобили водородом, доставленным на танкерах с крупных предприятий по реформингу топлива, поставки которого ни чем не будут уступать современным поставкам бензина с нефтеперегонных заводов. В долгосрочной перспективе, местные водородные заводы научаться извлекать пользу из местных ресурсов и из возобновляемых источников энергии.

Способ отделения водорода путем парового метанового реформинга применим к ископаемому топливу, как правило, к природному газу, его нагревают и добавляют катализатор. Природный газ не является возобновляемым источником энергии, но он распространен на территории нашего государства, и Министерство энергетики утверждает, что выбросы автомобилей, работающих на реформированном водороде, вдвое меньше, чем у автомобилей, работающих на бензине. Также реформированный водород производится в больших масштабах и в настоящее время является дешевле, чем водород из других источников. Подробности по данному вопросу вы можете прочитать в нашем материале « ».

Водород также может быть получен из биомассы, такой как сельскохозяйственные отходы, отходы животноводства и сточные воды. Используя процесс, который называется газификация, биомасса находится под воздействием температуры, пара и кислорода с целью образования газа, который после дальнейшей обработки, в конечном итоге дает чистый водород. «Существуют полигоны, уже являющиеся готовыми источниками данного газа, который будет потрачен впустую, а мог бы стать источником водорода», говорит директор по политике Ассоциации по исследованию водородной энергетики и топливных элементов, Джеймс Варнер.

Также существует электролиз, процесс отделение водорода из воды при помощи электрического тока. Этот способ звучит более заманчиво по сравнению с ископаемым топливом и отходами животноводства, но он имеет свои недостатки. В настоящее время способ электролиза является конкурентоспособным в тех районах, где электричество относительно дешевое. Существуют электролизеры, работающие от солнечно энергии или энергии ветра, но расходы возобновляемых источников энергии не достигли того уровня, чтобы вдохнуть жизнь в этот способ получения водородного топлива.

«Как только водород получит свою нишу на топливном рынке, и как только на него будет спрос, как и на различные способы его получения, мы увидим, что больше по нраву потенциальным потребителям», говорит Варнер. «Некоторые из способов добычи водорода потребуют новых законов регулирующих его добычу. Если водород будет пользоваться постоянным спросом, вы увидите, как начнут регулировать правила использования свалочных ресурсов и воды для электролиза».

ПОНИЖЕНИЕ СТОИМОСТИ И РАЗВИТИЕ МОДЕЛЬНОГО РЯДА

В настоящее время, самым большим препятствием для производителей автомобилей на водородном топливе является стоимость существующих технологий. Например, набор топливных элементов, используемый в автомобилях до настоящего момента, опирается на платину в качестве катализатора. Если не так давно вы посвящали себя поискам обручального кольца или символического подарка для своей любимой, вы наверняка представляете, насколько дорогим является этот металл.

Ученые из Лос-Аламосской национальной лаборатории доказали, что замена этого дорогостоящего металла на более распространенные металлы, такие как железо или кобальт, в качестве катализатора является возможной. А ученые из Case Western Reserve University разработали катализатор из углеродных нанотрубок, которые в 650 раз дешевле, чем платина. Переработка катализаторов еще больше может снизить стоимость, хотя автопроизводители пока не озвучивали на сколько.

На этом исследования по совершенствованию водородного топливного элемента не заканчиваются. К примеру Mercedes рассматривает возможность сжатия водорода до давления в 68.95 МПа (мегапаскаль) для того, чтобы на борту транспортного средства могло находиться больше топлива, с передовым в качестве дополнительного хранилища энергии. При таких улучшениях, как считает доктор Герберт Колер, вице-президент компании по исследованию новейших автомобильных технологий, предстоящие транспортные средства будут иметь диапазон, превышающий 1000 км.

От этой технологии, также можно добиться дополнительной эффективности, за счет переработки архитектуры набора элементов. Уже сейчас Министерство энергетики утверждает, что затраты на строительство автомобилей с топливным элементом были снижены на 30 процентов за последние три года и на 80 процентов за последнее десятилетие. В то же время, долговечность топливных элементов увеличилась вдвое, но этого недостаточно, нужно увеличить ее еще в два раза. Современные транспортные средства с топливным элементом, как утверждается, работают, по крайней мере, 2 500 часов (или около 120 000 км), и это недостаточно хорошо. «Чтобы конкурировать с другими технологиями, нам нужно достичь результата в 5 000 часов, как минимум», говорит один из членов ученого совета министерской программы по топливным элементам.

Toyota надеется продать седан, передвигающийся на топливе из водорода, за 50 тысяч долларов США. Несмотря на то, что в конечном счете развитие технологий может снизить затраты, реальные краткосрочные сбережения можно будет получить только от объемного производства. Один из печальных моментов производства состоит в том, что не существует оптовых поставок частей для автомобилей с водородным топливным элементом, даже автомобиль FCX Clarity, который уже находится в серийном производстве, не обеспечен дополнительными частями и оптовыми ценами на них. Но есть надежда, что производители могут установить топливные элементы водорода в уже и так дорогие модели для ранней адаптации, тем самым минимизируя свои потери. «Мы могли бы внедрить эту технологию в автомобили, цены на которые подобны ценам люксовых автомобилей. Пока рынок, не готовый к таким новшествам, переваривал бы эту новинку, мы бы (автопроизводители) в это время наращивали объемы», говорит Стив Эллис, менеджер по продажам автомобилей с топливным элементом компании Honda.

ТОПЛИВНЫЕ ЭЛЕМЕНТЫ С ВОДОРОДНЫМ ТОПЛИВОМ В ПОЛЕВЫХ УСЛОВИЯХ

Начиная с 2008 года, компания Honda начала ограниченную лизинговую программу для 200 седанов FCX Clarity, которые передвигаются на водородных топливных элементах. Как итог, только 24 клиента из Южной Калифорнии, США, платили в течение трех лет ежемесячный взнос в 600 долларов США. Так как срок аренды истек в 2011 году, компания Honda продлила договора с этими клиентами и подключила новых для своей исследовательской кампании. Вот то, что компания узнала нового за время исследований:

1. Водители FCX Clarity без проблем осуществляли короткие поездки через город Лос-Анджелес и его округи (Honda утверждает, что FCX может похвастаться диапазоном в 435 км).

2. Отсутствие необходимой инфраструктуры является основным неудобством для арендаторов, которые живут не рядом с одной из семи водородных заправочных станций в Калифорнии. Все станции находятся недалеко от Лос-Анджелеса, эффективно привязывая автомобили к 240-километровой зоне.

3. В среднем водители проезжали 19,5 тысяч км за год. Один из первых арендаторов только что пересек показатель в 60 тысяч км.

4. Продавцы, которые отпускают в лизинг автомобили FCX Clarity проходят специальную подготовку для обучения клиентов. «Этим продавцам задают такие вопросы, каких они никогда прежде не слышали», говорит менеджер по продажам и маркетингу автомобилей Honda с топливными элементами, Стив Эллис.

ПОЛУЧИТ ЛИ ДАННАЯ ПРОГРАММА ПОДДЕРЖКУ ПРАВИТЕЛЬСТВА?

Производители автомобилей и строители инфраструктуры сходятся во мнении, что одним из способов снижения затрат в краткосрочной перспективе является вмешательство со стороны государства. Что в США, однако, представляется маловероятным.

С министром энергетики Стивеном Чу, администрация Обамы неоднократно пыталась сократить финансирование программы развития топливных элементов, но до сих пор все эти сокращения отменял конгресс.

Акцент на аккумуляторных технологиях сторонникам водорода кажется недальновидным. «Это взаимодополняющие технологии», говорит Стив Эллис, представитель компании Honda. Технология, разработанная для FCX, например, в настоящее время развернута и на электромобиль Fit. «Мы считаем что водородные топливные элементы в сочетании с электромобилями могут дать весьма положительный результат, переплюнув все альтернативные источники энергии, имеющиеся на сегодняшний день и возглавив этого десятилетия».

Что касается инфраструктуры, то те, кто платит из своего кармана за возведение новых заправочных станций говорят, что они не отказались бы от некоторой помощи до тех пор, пока не увеличится спрос на данный вид топлива и не снизятся затраты на возобновляемые источники энергии.

Том Салливан верит в энергетическую независимость настолько сильно, что вложил все деньги, полученные от сети супермаркетов в компанию SunHydro, компанию, которая строит водородные заправочные станции на солнечных батареях. Он считает, что целевое снижение налогов могло бы стимулировать предпринимателей как он вкладывать деньги в строительство подобных станций. «Необходим реальный стимул, чтобы люди вкладывались в подобные предприятия», говорит Том. «Люди, которые находятся в трезвом уме, вероятно, не станут выделять деньги на строительство водородных заправочных станций».

Для Стива Эллиса из компании Honda этот вопрос является как практическим, так и политическим. «Эти технологии нанесут удар по общественным проблемам», говорит он. «Если это так, то поможет ли нам общество перейти на альтернативный вид топлива?»

А теперь настало время научного видео!

Мы живём в 21 веке, человечество развивается, строит заводы, ведёт активный образ жизни. Однако для полноценного развития и существования нам нужна энергия! Сейчас такой энергией является нефть. Из неё делается топливо для всех отраслей. Мы используем ее буквально повсюду: от маленьких авто, до огромных заводов.

Однако нефть не является бесконечным ресурсом, с каждым годом мы движемся к полному её уничтожению. Учёные говорят, что мы находимся на той стадии, когда нам нужно искать эффективную замену бензину, ведь уже сейчас цена на него очень высокая, а с каждым годом нефти будет всё меньше, а цены всё выше, и в скором времени, когда нефть закончится (а с существуюшем образом жизни человечества это произойдёт через 60 лет), наше развитие и полноценное существование попросту закончится.


Всем понятно, что нужно искать альтернативные виды топлива. Но какая замена самая эффективная? Ответ прост: водород! Вот, что заменит привычный всем бензин.

Кто придумал водородный двигатель?

Как и многие высокие технологии, данная идея пришла к нам с запада. Первый водородный двигатель разработал и создал американский инженер и учёный Браун. Первая компания, которая использовала данный двигатель, была японская «Honda». Но этой автомобильной компании пришлось на многое пойти ради воплощения в жизнь «автомобиля будущего». Во время создания авто были задействованы на несколько лет все лучшие инженеры и умы компании! Им всем пришлось приостановить производство некоторых автомобилей. И что самое главное, они отказались от участия в Формуле 1, так как все работники, которые были задействованы в создании болидов, стали разрабатывать автомобиль на водороде.


Плюсы водорода как топлива

  • Водород является самым распространенным элементом во вселенной, абсолютно всё в нашей жизни состоит из него, все окружающие нас предметы имеют хоть маленькую, но частицу водорода. Именно этот факт очень приятный для человечества, ведь в отличие от нефти, водород не закончится никогда, и нам не придётся экономить на топливе.
  • Он является абсолютно экологически чистым! В отличие от бензинового, водородный двигатель не выделяет вредных газов, которые негативно влияли бы на экологию. Выхлопами, которые выделяет такой силовой агрегат, является обычная пара.
  • Водород, который используется в двигателях, очень воспламеняем, и автомобиль будет хорошо заводиться и передвигаться, независимо от погоды. То есть нам больше не потребуется зимой прогревать автомобиль перед поездкой.
  • На водороде даже маленькие двигатели будут очень мощными и чтобы создать самый быстрый автомобиль, больше не потребуется строить агрегат размером с танк.

Конечно есть и минусы в этом топливе:

  • Дело в том, что вопреки тому, что это безграничный материал, и он имеется повсюду, его очень тяжело добывать. Хотя для человечества это не проблема. Научились добывать нефть среди океана, пробурив его дно, научимся и водород брать с земли.
  • Вторым минусом является недовольство нефтяных магнатов. Зразу после начала прогрессивного развития данной технологии, большинство проектов были закрыты. По слухам, всё это связано с тем, что если заменить бензин водородом, то самые богатые люди планеты останутся без дохода, а они этого позволить не могут.

Способы добычи водорода в качестве использования в виде энергии

Водород не является чистым ископаемым вроде нефти и угля, нельзя так просто взять выкопать и использовать его. Для того, чтобы он стал энергией, его нужно раздобыть и испоьлзовать некоторую энергию для его переработки, после чего этот самый распространенный химический элемент станет топливом.


Практикуемым на данный день способом добычи водородного топлива является так называемый «паровой риформинг». Чтобы переработать обычный водород в топливо, используются углеводы, которые состоят из водорода и углерода. При химических реакциях, при определенной температуре выделяется огромное количество водорода, который и можно использовать в качестве топлива. Данное топливо не будет выделять вредных веществ в атмосферу во время эксплуатации, однако во время его добычи выделяется огромное количество углекислого газа, который плохо влияет на экологию. Поэтому данный метод хоть и является эффективным, он не должен браться в основу по добыче альтернативного топлива.

Есть двигатели, для которых подойдёт и чистый водород, они сами перерабатывают данный элемент в топливо, однако, как и при предыдущем способе, здесь также наблюдается огромное количество выбросов углекислого газа в атмосферу.

Очень эффективным способом добычи альтернативного топлива в виде водорода является электролиз. Электрический ток пускают в воду, вследствии чего она распадается на водород и кислород. Данный метод является дорогим и хлопотным, однако экологически чистым. Единственным отходом от получения и эксплуатации топлива является кислород, который лишь позитивно повлияет на атмосферу нашей планеты.

А самым перспективным и дешёвым способом получения водородного топлива является переработка аммиака. При необходимой химической реакции аммиак распадается на азот и водород, при чём водорода получается в трижды больше, ежели азота. Данный метод лучше тем, что он немного дешевле и менее затратный. Кроме того, аммиак легче и безопаснее транспортировать, а по прибытию к месту доставки, следует запустить химическую реакцию, выделить азот и топливо готово.

Искусственный шум

Двигатели на водородном топливе практически бесшумны, поэтому на автомобилях, которые эксплуатируются или будут входить в эксплуатацию, устанавливается так называемый «искусственный шум автомобиля», - для предотвращения аварий на дорогах.

Ну что же, друзья, мы с вами стоим на пороге грандиозного перехода от бензина, который уничтожает всю нашу экосистему, до водорода, который наоборот её восстанавливает!

Проблема исчерпания запасов природных ресурсов стала актуальной как никогда. Количество автомобилей постоянно растет, а вместе с тем и потребление нефти. Это значит, что если данная активность будет и дальше возрастать, то скоро все мировые запасы нефти будут исчерпаны. Именно это натолкнуло инженеров всего мира решить проблему путем изобретения автомобильных двигателей, которые могут работать без потребления нефтяных ресурсов. В качестве альтернативы выступают автомобильные двигатели на водородном топливе.

Каким образом используется водород

Если брать во внимание все существующие требования к альтернативным видам топлива, то водородное является самым оптимальным источником энергии. При получении его с помощью воды, можно надеяться в его неисчерпаемость. Кроме того, водородное топливо не приносит вреда окружающей среде.

Уже существует небольшое количество автомобилей с двигателями на водородном топливе, но массовости ещё нет. Хотя со временем это планируется.

За основу работы автомобильного двигателя на водородном топливе берется реакция молекул воды, то есть их деление на кислородные и водородные составляющие. В наше время на основе данной реакции работают два направления:



Водородные двигатели внутреннего сгорания

Относительно этого есть свои определенные нюансы. Во время работы происходит накаливание до высоких температур и соответственно сжатие, которое, в свою очередь, вызывает реакцию газа со всеми металлическими деталями механизма, а также со смазочными веществами. Если происходит даже небольшая его утечка, возможна контактная реакция с горячим коллектором, в результате чего возникает пламя. Для обеспечения безопасности рекомендуется использование роторного мотора. Поскольку между коллекторами есть определенное расстояние.

Принципы работы системы зажигания в автомобильных двигателях на водородном топливе тоже претерпевают некоторые изменения. Между работой автомобильного двигателя с внутренним типом сгорания и работой электродвигателя на основе водородных компонентов есть отличие по КПД. Но все недостатки вполне возможно исправить в будущем, поскольку это новое изобретение.


Агрегаты, работающие от водородных батарей

В основе работы таких агрегатов лежат свойства электромагнитной индукции. Этот принцип также используется при функционировании аккумуляторов из свинца. Процент КПД равен 45.

Осуществить проход через структуру мембраны под силу протонам. Данная мембрана разделяет собой заряды электродов. Таким образом, водород подается на анод, а кислород в свою очередь на катод. Проходящие через структуру мембраны протоны двигаются в сторону катода, в результате чего происходит реакция. Впоследствии происходит образование жидкости и электрического тока. Электричество бежит по проводам к электромотору и, таким образом, питает автомобильный двигатель энергией.


Водородный двигатель своими руками

Генератор

Для того, чтобы сконструировать мощный автомобильный двигатель, работающий на водородном топливе, необходимо начать свою работу с генератора. Емкость, которая является полностью герметичной, с жидкостью и погруженными в неё электродами, и есть тем самым простым генератором. Для функционирования данного приспособления необходим источник с напряжением в 12 В.

Смесь водорода с кислородом отводится через специальный штуцер, который расположен на крышке самодельной конструкции. Это является основой работы генератора для мотора на водородном топливе.


Полноценная работа системы не возможна без специального накопителя и батареи. Под корпус можно взять водопроводный фильтр или же приобрести специальную установку. У специальной установки есть одно весомое преимущество, они оборудованы электродами, обладающими высокой производительностью.

В образовании нужного газа нет никаких больших трудностей - все достаточно просто. Трудности касаются количества газа, достаточно тяжело произвести его в нужном количестве. Увеличить степень эффективности можно за счет медных электродов. Также используют электроды из нержавейки, но они менее продуктивны.

Еще понадобится электронный блок, который стабилизирует подачу тока, поскольку он имеет разную силу. Для нормальных условий реакции необходим постоянный уровень воды в емкости. Поэтому стоит сделать автоматическую подачу жидкости. Благодаря интенсивности реакции электролиза соль выделяется в достаточном количестве.

Важно! Необходимо отметить, что протекание реакции электролиза возможно только в дистиллированной воде.


Для мотора на водородном топливе готовится специальная вода в количестве 10 литров, в которую добавляется гидроксид в количестве 50 грамм.

Устройство водородного двигателя

Для работы мотора на водородном топливе понадобятся запасные емкости и отводная система. Кроме этого нужно вмонтировать специальный прибор контроля уровня жидкости.

Совет! Чтобы избежать ложной реакции нужно установить его внутри корпуса. Датчик будет подавать командные импульсы, которые обеспечат автоматическую подпитку.

Важное значение имеет датчик давления. Его включение происходит на пометке в 40 psi. В момент, когда давление повысится и достигнет пометки 45 psi, происходит отключение подкачки. В случае превышения давления выше пометки 50 psi, срабатывает установленный предохранитель.

Для установки на автомобильный двигатель с водородным типом топлива используют предохранитель, состоящий из вентиля, предназначенного для аварийной откачки и разрывного диска. Активизация разрывного диска происходит в случае, когда давление достигнет показателя 60 psi. Отвод тепла осуществляется при помощи холодной свечи.


Электрическая часть

Регуляцию частоты и ширины импульса в моторе на водородном топливе осуществляет счетчик, работающий по принципу генератора импульсного плана.

Плата мотора оснащается двумя импульсными датчиками. Ближний должен быть оборудован крупным конденсатором. Робота второго начинается при помощи выхода с контакта № 3.

Располагающийся на счетчике последний выход соединен с коммутаторами, имеющими сопротивление 220 и 820 Ом. Увеличение тока до необходимого уровня происходит за счет транзистора. Вся ответственность защиты лежит на диоде 1N4007. Что позволяет придать процессам системы стабильность.


Автомобили на водороде

Людям глубоко заинтересовавшихся идеей автомобильных двигателей на водородном топливе или двигателей с гибридной системой, лидеры авторынка могут предложить некоторые варианты автомобилей, работающих по подобным схемам. В данной сфере заметно преуспели такие концерны как Daimler, Honda, Shanghai, VW. Они выпустили на рынок автомобили с водородным типом топлива, которые достойно представили работу своих инженеров.

Работа данного автомобиля основывается на водородной системе. Он способен достигать скорости равной 160 км/час. Одной водородной заправки хватает для того, чтобы автомобиль преодолел путь в 500 км. Объем бака позволяет заправить 5 килограмм водорода в сжиженном виде. С каждым днем интерес автолюбителей к данной модели автомобиля растет.


Данный автомобиль относится к серии «B-class» и оснащен электромотором на водородном топливе, который увеличил свою мощность на 115 л.с. Одной заправки достаточно для того, чтобы автомобиль преодолел расстояние в 400 километров. На данный момент автомобиль Mercedes F-Cell не порадовал публику своим появлением, и сейчас инженеры работают над его совершенствованием.


Это еще один представитель «семерочной» линейки автоконцерна BMW. Он обладает ДВС гибридного типа. Источниками энергии является водород и бензин. Двигатель на водородном топливе системы Hydrogen заставил своих изобретателей потрать над его созданием около 20 лет. Этот автомобиль достигает отметки спидометра в 100 км/час всего за 9,5 секунд.


Заключение

Обеспокоенность мирового общества возможным появлением дефицита запасов нефти, привело к поискам новых технологических решений, которые стали бы достойной альтернативой. Именно так возникла идея разработки автомобильного двигателя, который смог работать на водородном топливе. Пока она не успела достигнуть широкого распространения, но интерес к такой новинке с каждым днем растет с положительной динамикой.

Водородные топливные элементы. Как это сделано:

Водород практически не встречается в природе в чистой форме, поэтому первая проблема, которая стоит перед одним из видов топлива будущего - получение.

Вопреки распространенному стереотипу электролиз (химический процесс, возникающий при прохождении электрического тока через раствор или расплав электролита и приводящий к выделению на электродах его составляющих веществ) не единственный метод производства водорода, хотя именно его предлагают применять в бытовых электролитерах.

Об использовании водорода на службе автомобиля и начальную информацию о методах получения водорода читайте далее.

Как получают водород для использования в качестве топлива для автомобиля

Водород можно получать паровой конверсией - выделением чистой его формы из летучих углеводородов, чаще всего для этого используют метан, данный способ является наиболее дешевым.

Газификация угля также дает свои "водородные плоды" за счет преобразования твердого и жидкого топлива в горючие газы.

За производство водорода посредством термического разложения воды (пиролиза) ратуют британцы, мотивируя это тем, что сырьем в подобном случае может являться обычный мусор.

Еще одними из способов добывания водорода являются частичное окисление и группа биотехнологических методов.

Последние используют явление выделения водорода микроорганизмами (например, некоторыми водорослями при недостатке кислорода и серы), либо разложение воды с участием все тех же микроорганизмов. Благодаря использованию катализаторов эффективность последнего метода можно увеличить на треть.

Как хранят добытый для использования в автомобилях водород

Следующий задачей для водородной энергетики является процесс хранения водорода, оно возможно в трех формах: в виде сжатого газа, в сжиженном или адсорбированном состоянии, когда газ удерживается в поглотившем его веществе.

Так или иначе в каждом из этих случаев приходится решать определенную проблему: сжатый газ, несмотря на свою плотность, все-таки занимает немало места, жидкий - требует низких температур, а в случае третьей формы - это поиск подходящего материала для удержания летучего топлива, обладающего высокими поглощающими свойствами и подходящими условиями аккумуляции газа (в основе своей это углеродные наноструктуры с различными вариациями).



Следующий этап в транспортировке водорода к конечному пользователю - заправка. Различают мобильные, стационарные и домашние заправочные системы. В основном в них используется газообразный водород, хотя есть и станции, работающие с жидким топливом. В данном случае все зависит от автомобиля. Например, BMW Hydrogen 7 потребляет наряду с бензином жидкий водород, а вот его конкурент от General Motors - Opel Zafira Hydrogen 3 использует 2 бака под сжатый и сжиженный газы.

Проблемы продвижения водорода как топлива

Вообще заправочная инфраструктура - один из камней преткновения для водородной отрасли: чтобы автомобили на водороде стали популярны, для них нужна обслуживающая система, а чтобы создать эту систему, необходимо достаточное количество ее пользователей.

Что в конечном итоге сдвинет с мертвой точки решение этой проблемы - покажет время, но как и всегда вся надежда возлагается на науку, хотя здесь уже возникнет другая дилемма: наука нуждается в финансировании, а инвесторам в свою очередь нужна гарантия результативности и востребованности открытий.



Преимущества и плюсы водорода как топлива для продавцов

Из привлекательных факторов водородной инфраструктуры можно выделить время заправки автомобиля - оно составляет обыкновенно 3-5 минут (1 кг топлива по данным американских ученых необходим для 96 км пробега).

Также определенно стоит подчеркнуть, что на первых порах малые и средние заправки могли бы совмещать в себе функции производства, хранения и передачи топлива потребителю, тем самым исключив расходы на транспортировку. Однако чем больше водородных автомобилей будет появляться, тем большие размеры заправочных станций будут востребованы.

Особенности потребления водородного топлива

Наконец, пришло время поговорить об особенностях потребления водородного топлива.

Во-первых, на радость борцам за экологию снижается выброс углекислого газа и вредных продуктов сгорания в атмосферу, здесь необходимо сделать ремарку о том, что данное положительное явление может нивелироваться, если для производства самого водорода будут использоваться грязные источники энергии, так что как ни крути, а водородное дитя требует более нежного обращения, если люди хотят, чтобы из него кое-что получилось в будущем.



Во-вторых, с использованием водорода экономики стран могут стать менее зависимыми от роста цен на энергоносители.

В-третьих, КПД водородного двигателя составляет 45%, что больше, чем у его дизельного аналога. Хотя мощность первого меньше, чем у второго на 20-30%, кроме того, водород может существенно увеличить износ деталей двигателя за счет вступления в реакции с материалами, из которых они изготовлены.

Безопасность водорода как топлива для автомобиля

Далее, не следует пренебрегать вопросом безопасности - водород летуч и легко воспламеняем: закрытое пространство автомобиля может заполниться опасным газом, а уже одно то, что смесь водорода и воздуха является взрывоопасной, способно напрочь оттолкнуть от его использования. Однако не следует слишком критично относиться к этим замечаниям, все знают, насколько опасны АЭС при возникновении проблем в их эксплуатации, и тем не менее они считаются самыми чистыми производителями электроэнергии.



Кроме того, не обязательно вообще кардинально менять автомобиль и вид топлива, сегодня уже есть возможность использовать гибридный транспорт, в котором, например, используется смесь водорода и дизельного топлива, что с одной стороны сокращает его расход, а с другой - уменьшает количество вредных выбросов в атмосферу.

Также никто не запрещает использовать водород в других транспортных системах, скажем, железнодорожной и морской: здесь не так важна компактность топливных емкостей, а в случае применения водорода в качестве топлива, например, для подводных лодок, они приобретают существенный козырь - практически полное отсутствие шумов.

Вывод о водороде как о топливе для автомобиля

Водородной отрасли нужно дать время развиться, хотя сегодня оно как никогда напоминает ускользающий через пальцы песок, потому как уже появляются автомобили на гибридных электро-дизельных или электро-азотных двигателях, а также работающие на сжатом воздухе. Конкуренция на рынке энергоносителей крайне высока и вряд ли уменьшится в ближайшее время.

Водородная энергетика.

Энергетические кризисы, возникающие при малейшей заминке на рынке продажи традиционного топлива, стимулируют поиск наиболее эффективных заменителей газа или нефти. По мнению большинства ученых, занимающихся поиском альтернативных энергоносителей, одним из перспективнейших направлений развития современной энергетики является попытка замены углеводного топлива на водород - наиболее распространенный в природе химический элемент.

За проведения подобной модернизации выступают и экологи, поскольку продукт распада водородного топлива (вода) относится к абсолютно безвредным химическим соединениям, чего не скажешь о привычных углеводах, горение которых сопровождается выделение в атмосферу целого «букета» вредных веществ. Доступность водорода, содержащегося в и воде, и воздухе, и даже в разряженном космическом пространстве, делает водородную энергетику чрезвычайно популярной с точки зрения крупного бизнеса (затраты на добычу энергоносителя практически нулевые, а прибыль можно извлекать буквально из воздуха).

В начале 21-го века серьезный бизнес открыто заявил о заинтересованности именно в водородной энергетике. Во второй половине «нулевых» США, Китай и страны ЕС инвестировали в производство водорода миллиарды долларов. Только один проект водородной электростанции «FutureGen» обошелся правительству США в 1,2 миллиарда долларов, а стоимость китайского аналога GreenGen оценивается в еще большую сумму. Кроме того, водородную энергетику развивают такие компании, как Sharp, Sanyo, Hitachi, Toyota, Panasonic, инвестирующие громадные суммы в производство бытовых энергоустановок.

Водородное топливо.

Одним из возможных способов использования энергии водорода является трансформация этого химического элемента в водородное топливо – сжиженную или газообразную смесь водорода и кислорода. Теплота горения подобного коктейля существенно выше теплоты окисления смеси бензина (природного газа) и воздуха. Кроме того, смешанный в определенных пропорциях водород и кислород детонирует в камере сгорания не хуже бензиновых паров. Распространение водородного топлива пока еще сдерживает высокая себестоимость конечного продукта и отсутствие развитой инфраструктуры (заправочные станции, заводы по производству, топливопроводы и прочее). Стоимость килограмма водородного топлива зависит от способа получения. Например:

Конверсия метана обходится в 2,5 доллара за кило топлива;

Классический электролиз воды приводит к затратам от 2 до 10 долларов за кило топлива (в зависимости от способа получения электроэнергии);

Высокотемпературная обработка угля в безвоздушном пространстве позволяет получать кило топлива по цене от 1,5 до 2 долларов.

Разумеется, при таком уровне развития технологии добычи водородного топлива оно не может конкурировать с традиционными энергоносителями. Однако современные технологии совершенствуются, что приводит к снижению себестоимости альтернативного горючего, а традиционные нефтепродукты только дорожают. Поэтому в ближайшем будущем либо бензин приблизится к цене водородного топлива, либо альтернативное горючее подешевеет до цены нефтепродуктов – в любом случае в выигрыше окажутся производители альтернативных энергоносителей.

Водородные автомобили.

Гиганты автомобильной индустрии очень быстро отреагировали на перспективы трансформации энергоносителей. Попытки разработки «водородного» транспортного средства увенчались успехом еще в прошлом веке, а первом десятилетии века нынешнего появились уже серийные образцы «водородных» автомобилей. По оценкам немецких футурологов из группы к середине 21 века доля привычных, бензиновых двигателей не превысит одной четверти, остальные агрегаты будут потреблять альтернативное топливо.

На сегодняшний день мировые автопроизводители могут предложить заинтересованным покупателям и «водородную» и «гибридную» (традиционный бензин плюс водород) схему силового агрегата. Лидирующие позиции в этом сегменте рынка занимают концерны Daimler, Honda, и симбиоз китайского Shanghai и немецкого VW. Именно эти производители предлагают автолюбителям готовые решения: BMW Hydrogen 7, Honda FCX, Mercedes F-Cell. Рассмотрим эти и другие решения подробнее.

Honda FCX – полноценный «водородный» автомобиль, развивающий скорость до 160 км/час и способный проехать более 500 километров на одной заправке. Емкость бака Honda FCX – более 5 килограмм сжиженного водорода. На сегодня обладателями этого технического чуда являются 200 счастливчиков, а готовность приобрести такой автомобиль выразили около 50 тысяч автолюбителей.




Силовыми агрегатами Honda FCX являются 3 электродвигателя, один вращает вал передней колесной пары, два других вмонтированы в задние колеса. Мощность «переднего» двигателя – 80 кВт. Мощность «задних» агрегатов – по 25 кВт каждый. Двигатели Honda FCX не испытывают проблем с пуском даже при чрезвычайно низких температурах (-30 по Цельсию).

Проект Honda FCX относится к комплексным решениям. Кроме транспортного средства компания Honda продает бытовую установку по добыче водородного топлива - Home Energy Station, вырабатывающую водород методом электролиза. Причем под водородное топливо расходуется только часть выработанного газа, оставшийся объем тратится на производство электроэнергии и обогрев жилища. В сутки Home Energy Station производит около 50 «кубов» альтернативного топлива.

2. Mercedes F-Cell является автомобилем из серии «B-class», оснащенным особым агрегатом, который разрабатывался в рамках проекта HYGENIUS. На сегодняшний день проект F-Cell проходит традиционные тесты, аналогичные испытаниям в полевых условиях «бензиновых» моделей. Инженеры концерна Mercedes заявили о решении проблемы «холодного пуска» двигателя и возможном завершении работ по оптимизации функционирования управления электродвигателем в скоростном режиме.



Mercedes F-Cell образца 2010 года оснащен электродвигателем F 600, мощность которого увеличилась до 115 лошадиных сил, а крутящий момент приближается к отметке 350 Нм. Кроме того, инженеры Mercedes добились 16-процентного сокращения потребления топлива по сравнению с моделями 2005 года. Теперь Mercedes F-Cell способен преодолеть более 400 километров всего на одной заправке «водородного» бака. Расходы на заправку «полного» бака не превышают стоимости 12 литров стандартного дизельного топлива. Автомобиль Mercedes F-Cell пока еще не поступил в продажу. Концерн Mercedes-Benz эксплуатирует модель F-Cell в рекламных целях, подогревая интерес к другим разработкам компании – автобусам из серии Citaro.


Проект Citaro ориентирован на выпуск общественного транспорта для крупных городов. На сегодня в мире существует около 40 действующих автобусов Mercedes Citaro. Мощность электродвигателя такого автобуса не превышает 250 кВат, что позволяет транспортировать пассажиров и багаж со скоростью 80 км/час. Расход составляет 25 кило на 100 километров. В баке бака Mercedes Citaro помещается 42 килограмма водородного топлива, что позволяет этому транспортному средству проехать 167 км без дозаправки. Автобусы Mercedes Citaro можно увидеть не только в крупных городах Европы – 3 автобуса закупил Китай (для пекинского общественного транспорта), а 1 автобус «заехал» в далекую Австралию.

BMW Hydrogen 7 –очередной вариант стандартной «семерки» BMW, оснащенный гибридным двигателем внутреннего сгорания. В качестве топливной смеси применяется бензин или водород. Двигатель Hydrogen является итогом двадцатилетней работы инженеров компании BMW. Этот агрегат способен «разогнать» стандартный BMW 7 до 230 км/час, а до первой сотни это авто «добегает» за 9,5 секунд.



Показатель потребление топлива у Hydrogen равняется 6,5 литрам бензина или 25 литров жидкого водорода на 100 километров пути. Емкость классического (бензинового) бака – 74 литра (хватает на 480 км). Емкость водородного бака – 8 килограмм. Именно этот элемент BMW Hydrogen 7 отличает данное авто от изделий конкурентов. Бак для водородного топлива позволяет сохранять этот летучий газ в сжиженном состоянии, поддерживая постоянную температуру в -253 градусов по Цельсию. Разумеется, такая схема хранения топлива чрезвычайно опасна, но концерн BMW утверждает, что его автомобиль Hydrogen 7 не опаснее классического бензинового варианта, а канадские аудиторы из Magna International подтверждают это заявление. Водородный бак для Hydrogen 7 прошел все тесты безопасности, и выдержал не только механическое воздействие, но и нагрев до температуры в 1000 градусов по Цельсию. К сегодняшнему дню реализовано более 100 автомобилей BMW Hydrogen 7

Аналогичный проект делает компания Mazda, решившая запустить в серию концепт RX-8 hydrogen – автомобиля с гибридным двигателем. Агрегат получил наименование Wankel и позволяет проехать до 100 километров пути на одной заправке водородным топливом или 550 км на бензине.


Емкость водородного бака составляет 2,4 кило. Первая партия RX-8 hydrogen была заказана Норвегией, закупившей более 30 автомобилей для проверки работоспособности национального проекта HyNor (водородные дороги Норвегии - hydrogen highway in Norway). Мощность водородной части двигателя RX-8 hydrogen в два раза ниже бензиновой – 109 против 192 «лошадок», но этих усилий с избытком хватает для достижения максимальной скорости в 170 км/час и разгона до 100 км/час 10 секунд.

Водородные заправочные станции. Водородные шоссе.

Для представителей автомобильной индустрии ввод в эксплуатацию водородных двигателей является очередным этапом борьбы за благорасположение целевой аудитории потребителей. Практически все крупные корпорации уже имеют в своем модельном ряду «водородный» автомобиль и готовы наращивать производство подобных авто уже в ближайшем будущем. Представители энергетических компаний не разделяют подобного оптимизма. В последние десятилетия бензиновые колонки с трудом уступают место газозаправочным станциям.



Вероятно, поэтому производители водородных заправок ориентируют свою продукцию на бытовой рынок, предпочитая разрабатывать и продавать либо домашние, либо мобильные водородные заправочные станции. Подобную политику декларирует концерн Toyota, реализующий бытовую водородную установку всего за 4100 долларов США.

На промышленной основе водородные заправки строят только в США и Канаде. Именно в этих странах за последнее 2-3 года открылось более 200 заправок. Американское правительство реализует план оснащения водородными заправками крупных магистралей. Водородные шоссе появились в Калифорнии, Нью-Йорке (Hi Way Initiative), Иллинойсе (2H2), Флориде. Подобного размаха внедрения водородного топлива не наблюдается даже в Канаде (1 шоссе на 900 км- The Northern H) и Норвегии (система дорог HyNor, общей протяженностью в 500 км). Германия и скандинавские страны пока еще только собираются внедрять национальные проекты водородных магистралей (соответственно - Zero Regio и Scandinavian Hydrogen Highway Partnership).



Жителям нашего государства остается только завидовать иностранцам и удивляться нерасторопности отечественных энергетиков. Хотя проекты установки водородных двигателей на автомобили Lada 111 и «Нива» были реализованы еще в начале 21-го века.