Гидравлическими двигателями называют силовые установки и машины, преобразующие энергию потока или давления жидкости в механическую энергию.
Как видно из определения, гидравлические двигатели выполняют задачу, обратную задаче гидравлических насосов, из чего вытекает принцип обратимости, согласно которому практически любой насос (преобразующий механическую энергию в энергию потока) можно использовать в качестве гидравлического двигателя для выполнения противоположной функции.
Свойство обратимости гидравлических машин в большинстве случаев позволяет эксплуатировать одну и ту же гидравлическую машину, как в режиме насоса, так и в режиме двигателя, то есть создавать насосы и двигатели по общим конструктивным схемам.

Естественно предположить, что гидродвигатели, как и гидронасосы, можно классифицировать на две группы: динамические, отбирающие кинетическую энергию у потока жидкости, и объемные, преобразующие энергию давления потока в механическую энергию.
К первой группе гидравлических двигателей можно отнести различные турбины, т. е. лопастные (центробежные и осевые) насосы, выполняющие обратную функцию (преобразования энергии движения потока в механическую энергию) .

Вторая группа – объемных гидравлических двигателей, принципиально может быть представлена практически всеми видами рассмотренных ранее конструкций гидравлических насосов объемного типа - шестеренные, пластинчатые, роторно-поршневые, диафрагменные, поршневые и т. д. Однако наибольшее практическое применение в машиностроении нашли лишь динамические гидродвигатели-турбины и объемные гидродвигатели, имеющие высокий КПД – аксиальные и радиальные роторные гидравлические двигатели, а также особый тип гидродвигателей – гидроцилиндры.

Принцип действия объемных гидравлических двигателей основан на возникновении неуравновешенной силы на подвижных элементах рабочих камер при воздействии на них жидкости, подводимой под избыточным давлением от источника питания (насоса, аккумулятора, магистрали) .
В процессе работы двигателя герметично отделенные друг от друга камеры попеременно сообщаются с местами подвода, где они увеличивают свой объем и заполняются маслом под давлением, и отвода, где при уменьшении объемов камер происходит вытеснение жидкости в сливную линию.
Подвижные элементы рабочих камер конструктивно могут быть выполнены в виде зуба, шестерни, пластины, плунжера, поршня и т.д.

По характеру движения выходного звена гидравлические двигатели делят на:

  • моторы с неограниченным вращательным движением;
  • поворотные двигатели с ограниченным (меньше 360°) углом поворота;
  • цилиндры с ограниченным возвратно-поступательным прямолинейным движением.

Рабочие характеристики и параметры гидравлических двигателей

Работа разных по конструкции гидравлических двигателей (как и разных гидронасосов) характеризуется различными параметрами и рабочими характеристиками.
Для гидравлических моторов основными являются следующие параметры:

Рабочий объем – суммарное изменение объемов рабочих камер мотора за одни оборот ротора или объем жидкости, при прохождении которого через мотор его ротор совершит один оборот:

V о = V k zk , м 3

где:
V k – изменение объема рабочей камеры мотора за один рабочий цикл, рассчитанное по ее геометрическим размерам;
z – число рабочих камер;
k – кратность действия, то есть число рабочих циклов, совершаемых за один оборот вала.

Теоретический расход мотора – это расчетный объем жидкости, проходящий через мотор в единицу времени:

Q m = V о n , м 3 /с

где: n – частота вращения вала мотора.

Фактический расход жидкости через мотор больше теоретического на величину объемных потерь:

Q ф = Q m + ΔQ м , м 3 /с

где: ΔQ м – утечки масла через зазоры внутри мотора из полостей питания в полости слива и утечки жидкости в окружающую среду.

В отличие от насоса утечки масла в моторе направлены в ту же сторону, что и основной поток.

Объемный КПД мотора :

η о = Q m /Q ф = Q m /(Q m + ΔQ м) .

Рост объемных потерь приводит к уменьшению КПД мотора.

Частота вращения вала мотора:

n = Q m /V о = Q ф η о /V о , с -1

Номинальное давление рном (Па) – наибольшее давление рабочей жидкости на входе в мотор, при котором гидравлическая машина должна проработать в течение установленного срока службы с сохранением основных параметров в пределах установленных норм.

Перепад давлений определяется разностью давлений масла на входе и выходе мотора:

Δp = р вх - р вых , Па

Полезная (эффективная) мощность мотора определяется из зависимости:

N n = Mω = 2πMn , Вт

где:
М – вращающий момент на валу мотора;
ω = 2πn – угловая скорость вала;
n – частота вращения вала мотора.

Вращающий момент на валу мотора определяется по формуле:

M = N n /ω = Q m Δp/2πn = V о Δp/2π , Нм

Потребляемая гидромотором мощность :

N м = Q ф Δp = N n /η гм , Вт

где: η гм – полный КПД гидравлического мотора.

Полный КПД гидравлического мотора :

η гм = N n /N м или η гм = η о η м η г ,

где: η о, η м, η г – соответственно объемный, механический и гидравлический КПД мотора.

При типовом проектировании привода машины гидравлический мотор выбирают по полезной (эффективной) мощности и номинальной частоте вращения вала, то есть так же, как и электродвигатель.

Поворотные гидравлические двигатели характеризуются следующими основными параметрами:

Рабочий объем на угол поворота (270° и меньше) , м 3 .

Фактический расход масла при максимальной скорости поворота вала определяется по формуле:

Q ф = zbω(R 2 – r 2)/2 , м 3 /с

где:
z – число пластин;
b – ширина пластины;
R и r – большой и малый радиусы ротора поворотного двигателя;
ω – максимальная угловая скорость поворота вала.

Номинальный вращающий момент на валу :

М ном = zbΔp(R 2 – r 2)/2 , Нм

где: Δp – разность давлений в напорной и сливной камерах двигателя при номинальном давлении питания.

Полный КПД при номинальных параметрах (для стандартных поворотных гидравлических двигателей типа ДПГ полный КПД может достигать 95%) .

Для гидравлических цилиндров основными являются следующие параметры:

  • диаметр поршня D ;
  • диаметр штока d ;
  • величина хода S поршня;
  • номинальное давление рном на входе;
  • номинальное усилие F на штоке;
  • минимальная и максимальная скорость v перемещения.

Рабочие (эффективные) площади поршня:

со стороны бесштоковой полости:

F 1 = πD 2 /4 , м 2 ,

со стороны штоковой полости:

F 2 = π(D 2 – d 2)/4 , м 2 ,

где: D – диаметр поршня; d – диаметр штока.

Номинальное усилие на штоке цилиндра без учета сил трения и инерции:

для цилиндра с односторонним штоком:

R = p 1 F 1 – p 2 F 2 , Н ,

для цилиндра с двусторонним штоком:

R = (p 1 – p 2)F 2 , Н ,

где р 1 и р 2 – номинальное давление масла соответственно в напорной и сливной камерах гидроцилиндра.

Скорость движения поршня :

v = Q ф /F , м/с ,

где:
Q ф – фактический расход масла с учетом утечек;
F – площадь поршня со стороны напорной камеры цилиндра.

Мощность цилиндра :

N = Rv , Вт

Тепловое удлинение цилиндра :

λ = εLΔt , м ,

где:
ε – коэффициент линейного расширения (для стали ε = 12×10 -6);
L – длина цилиндра;
Δt – повышение температуры.

Удлинение цилиндра велико (λ ≈ 1 мм, при L = 2 м, Δt = 40˚) , поэтому рекомендуется одну из его опор выполнять скользящую, а другую закреплять неподвижно.
Особо следует подчеркнуть, что полный КПД гидроцилиндра обычно превышает 95% , то есть больше, чем у любых других известных двигателей.



Гидромоторы

Как уже отмечалось выше, гидравлические машины обладают свойством обратимости. Это позволяет создавать по одним и тем же конструктивным схемам, как объемные насосы, так и гидравлические моторы.



Рассмотрим работу гидравлической машины, схема которой показана на рисунке 1 , в режиме мотора. Предположим, что в рабочие камеры машины, расположенные справа от вертикальной оси, подается жидкость от насоса, а камеры, расположенные слева соединены с баком.
Под действием избыточного давления на пластинах возникают неуравновешенные силы, создающие вращающий момент на валу мотора, направленный против часовой стрелки. Камеры, соединенные с баком, при вращении ротора освобождаются от рабочей жидкости. Если кольцо А установить в корпусе мотора соосно с ротором, то момент на валу мотора станет равным нулю и вращение вала прекратится.

Аналогично можно рассмотреть работу в режиме мотора аксиально-поршневой гидравлической машины.
При подаче масла под давлением через отверстие распределителя, поршни будут со значительным усилием прижаты жидкостью к наклонному диску.
В результате силового взаимодействия каждого из поршней с диском возникнет тангенциальная сила, направленная перпендикулярно оси поршня. Таким образом, на блок и связанный с ним вал гидравлического мотора начнет действовать вращающий момент.
Остальные поршни, рабочие камеры которых в это время соединены с магистралью сброса, будут вытеснять масло через отверстие распределителя на слив в бак.

Существенным недостатком рассмотренной схемы являются значительные изгибающие усилия, воспринимаемые поршнями и вызывающие их преждевременный износ и нарушение герметичности рабочих камер.
Для исключения указанного недостатка используют гидравлические машины этого типа с двойным ротором (рис. 2) .


При подводе жидкости через неподвижный торцовый распределитель 6 в рабочую камеру мотора, поршень 2 перемещается вправо в расточке ротора 1 и, воздействуя на толкатель 4 , создает силу F на наклонном диске 8 .
Вращающий момент, создаваемый тангенциальной силой T , передается через толкатель 4 ротору 3 , жестко связанному с валом 7 мотора, и с помощью пальца 5 ротору 1 , свободно вращающемуся на валу. Таким образом, поршни 2 не воспринимают изгибающего момента от действия силы T .

В гидравлических приводах металлообрабатывающих станков преимущественно применяют нерегулируемые аксиально-поршневые моторы, которые в ряде случаев имеют существенные преимущества перед электромоторами (гидравлические моторы одинаковой с электродвигателями мощности в среднем в шесть раз меньше по габаритам и в четыре-пять раз по массе) .

При наибольшей частоте вращения вала n max = 50 c -1 наименьшее значение частоты может составлять n min = 0,5 c -1 , а у моторов специального исполнения – до n min = 0,05 c -1 и меньше, причем легко обеспечивается бесступенчатое регулирование частоты вращения во всем диапазоне.
Время разгона и торможения вала гидравлического мотора не превышает нескольких сотых долей секунды; возможны режимы частых включений и выключений, реверсов, изменения частоты вращения.
Вращающий момент мотора легко регулируется изменением разности давлений на входе и выходе. При подходе рабочего органа станка к упору, вращение вала мотора прекращается, а развиваемый им вращающий момент остается неизменным. Полный КПД находится в пределах 80...90% .

Поворотные гидравлические двигатели нашли широкое применение в станках и промышленных роботах для обеспечения возвратно-вращательного (поворотного) движения рабочих органов или вспомогательных устройств. Конструктивные схемы таких двигателей приведены на рисунке 11 .

Поворотный двигатель (рис. 13,а) состоит из корпуса 1 , поворотного ротора, представляющего собой втулку 2 с одной лопастью 3 , неподвижной разделительной перегородки 4 , подпружиненного уплотнения 5 вала и двух крышек. Вал установлен на двух подшипниках, расположенных в крышках.
Двигатель имеет две герметичные рабочие камеры. При подводе масла под давлением в верхнюю полость лопасть вместе с валом поворачивается по часовой стрелке на угол до 270° , одновременно из нижней полости жидкость вытесняется в сливную линию и возвращается в бак.

Многолопастные поворотные двигатели (рис. 13,б и в) позволяют получить на валу больший вращающий момент, чем у двигателя с одной лопастью, однако при этом уменьшаются возможный угол поворота и угловая скорость вала.
Двигатели с одной лопастью работают при номинальном давлении 16 МПа , развивая номинальный вращающий момент до 2000 Нм .

Гидравлические цилиндры

Гидравлические цилиндры, как тип гидравлических двигателей, нашли широкое применение в технике и многих областях промышленности. Простота и надежность, удобство технического обслуживания и эксплуатации послужили причиной использования этих гидромашин в самых различных гидроприводах - силовых, дистанционного управления механизмами и т. п.
Применяются гидроцилиндры и в сельскохозяйственной, автомобильной и дорожной технике.

Цилиндры, применяемые в гидравлических приводах технологического оборудования, различают по направлению действия рабочей жидкости (одностороннего и двустороннего действия) и по конструкции рабочей камеры (поршневые и плунжерные) .

В цилиндрах одностороннего действия движение выходного звена под действием рабочей жидкости возможно только в одном направлении, а возврат в исходное положение происходит под действием внешних сил, например силы пружины или силы тяжести. В последнем случае цилиндр располагают вертикально.



В цилиндрах двустороннего действия движение выходного звена под действием рабочей жидкости возможно в двух взаимно противоположных направлениях.

В поршневых цилиндрах две рабочие камеры образованы поверхностями корпуса и поршня со штоком (односторонним или двусторонним) .

В плунжерных цилиндрах одна рабочая камера образована поверхностями корпуса и плунжера.

Телескопические цилиндры (одностороннего и двухстороннего действия) имеют рабочую камеру образованную также поверхностями корпуса и плунжера.
Основные типы цилиндров, применяемых в машиностроении, показаны на рисунке 3 .

Корпус поршневого гидроцилиндра двустороннего действия с односторонним штоком (рис. 3,а) жестко закреплен на станине машины, а шток связан с движущимся рабочим органом. Если в цилиндр при прямом (вправо) и обратном (влево) ходе поступает одинаковое количество масла, то при малом диаметре штока площади F 1 и F 2 и скорости v 1 и v 2 близки по величине, а при увеличении диаметра штока скорость v 2 становится заметно больше v 1 .

Равенство скоростей v 1 и v 2 можно обеспечить за счет дифференциального включения цилиндра, у которого F 1 = 2F 2 . В этом случае при движении вправо обе полости (камеры) цилиндра соединяют с напорной линией, а при обратном ходе (влево) – штоковая полость продолжает соединяться с напорной линией, а поршневая соединяется со сливной линией.
При двустороннем штоке (рис. 3,б) площади F поршня обычно одинаковы, следовательно, равны и скорости v1 и v2 . Недостатки таких цилиндров – увеличенная длина и необходимость второго уплотнения для штока.

Иногда, из конструктивных соображений, бывает удобнее закрепить шток цилиндра, а его корпус связать с подвижным органом машины (рис. 3,в и 3,г) . В этих случаях масло в цилиндр подводят через отверстия в штоке или через гибкие рукава (шланги) высокого давления.

Для зажимных и фиксирующих механизмов широко применяют цилиндры одностороннего действия (рис. 3,д) . Плунжерный цилиндр (рис. 3,е) способен перемещать вертикально расположенный рабочий орган только вверх; движение вниз происходит под действием силы тяжести.
С помощью нескольких плунжерных цилиндров (рис. 3,ж) можно обеспечить движение рабочего органа машины в обе стороны.
Плунжерные цилиндры проще в изготовлении, так как отпадает необходимость в трудоемкой обработке внутренней поверхности цилиндра, однако имеют меньший ход. Во избежание ударов поршня о крышки рекомендуется использовать цилиндр с ходом несколько большим, чем ход рабочего органа станка.
Следует помнить, что в большинстве случаев гидроцилиндры не допускают радиальную нагрузку на шток.



Гидравлические машины – это агрегаты, которые передают механическую энергию водной рабочей среде или выполняют обратное действие по добыче энергии из воды и её передаче рабочему механизму. Такое оборудование довольно давно стало использоваться в различных сферах жизни людей. Как правило, агрегаты, которые передают энергию воды механическим частям, называются гидромоторами, а агрегаты, выполняющие обратное действие, – гидравлический или паровой насос. Об устройстве аксиально-поршневых агрегатов и пойдёт речь в нашей статье. Причём мы рассмотрим именно гидравлический, а не паровой агрегат. Видео в конце статьи поможет вам понять принцип работы такого насоса.

Характеристики

Главным отличием аксиально-поршневых насосов является то, что рабочие камеры в них выполнены в виде расточек в цилиндрическом блоке. При этом они располагаются параллельно (аксиально) поршням и оси (в отличие от радиально-поршневого прибора). Поршни в свою очередь перемешаются в рабочих камерах агрегата, чем способствуют увеличению или уменьшению объёма расточек. За счёт этого происходит всасывание или отдача водной среды во время вращения цилиндрического блока.

По сути, и радиально-, и аксиально-поршневой насос – это объёмный агрегат, который работает за счёт изменения размеров рабочих камер. Эти камеры в свою очередь соединены с входным и выходным патрубками, по которым происходит забор и отдача воды. Причём процесс соединения выполняется поэтапно по истечении определённого промежутка времени. Принцип работы парового, радиально- и аксиально-поршневого агрегата очень похож.

Устройство и принцип действия


Подобное оборудование состоит из следующих узлов и деталей:

  • в цилиндрическом блоке расположены поршни;
  • есть основной или ведущий вал;
  • шатуны;
  • распределительное устройство;
  • упорный диск.

Принцип действия прибора основан на вращении ведущего вала, действие которого передаётся на специальный цилиндрический блок. Во время этого происходит поступательное движение поршней в направлении оси блока. В итоге механизмы выполняют возвратно-поступательные движения (аксиальные), благодаря которым и был назван прибор.

В результате движения поршней в цилиндре происходит всасывание и выталкивание жидкости. Стыковка с всасывающей и подающей линией происходит через специальные отверстия в распределительном приспособлении. Чтобы избежать неисправностей, цилиндрический блок выполнен так, что он плотно прижимается к распределительному механизму. Для большей надёжности отверстия этого механизма разделены с помощью уплотняющих перемычек. Для уменьшения гидроудара эти перемычки укомплектованы дроссельными канавками. Благодаря им давление рабочей среды в цилиндрах повышается плавно.

Разновидности


В отличие от парового и радиально-поршневого насоса агрегаты аксиального типа делятся на два вида:

  1. Аксиально-поршневое оборудование с наклонной шайбой . У таких приборов приводной вал соединён с цилиндрическим баком и закреплён на подшипниках. В рабочих камерах находятся поршни, которые опираются на наклонную шайбу. Рабочая поверхность этой шайбы в свою очередь образует перпендикуляр к оси блока с цилиндрами. Благодаря такому углу наклона во время вращательных движений ротора поршни выполняют возвратно-поступательные движения. За счёт этого увеличивается или уменьшается объём камер. Это способствует всасыванию или выталкиванию воды через отверстие в распределительном диске. Чтобы получить регулируемый насос, необходимо изменить угол наклона шайбы. Благодаря этому агрегат будет изменять подачу жидкости. Для изменения направления подачи воды необходимо отрегулировать обратный наклон цилиндрического блока относительно вертикали приводного вала. Так выполняется реверсирование подачи воды. Благодаря такому принципу действия всасывающий и нагнетательный трубопроводы не меняются местами. Агрегаты этого типа обычно используются для работы в среднем и тяжёлом режиме.
  2. Аксиально-поршневое изделие с наклонным блоком . У таких насосов в отличие от парового и радиально-поршневого агрегата приводной вал выполнен в форме буквы «Т». Он крепится в радиально-упорных подшипниках. Блок цилиндров в свою очередь опирается на отдельную ось и расположен под определённым углом к оси вала. В цилиндрическом блоке есть несколько аксиальных расточек, в которых находятся поршни. Они соединены с валом посредством шатунов. Когда происходит вращение вала, цилиндрический блок также приходит в движение за счёт передачи движения посредством поршней и шатунов. Устройство и принцип работы этого аксиального насоса основаны на том, что благодаря углу между валом и блоком цилиндра часть поршней будет выходить из ротора, в то время как другая часть сможет задвигаться внутрь. За счёт такого действия объём рабочих камер будет уменьшаться или увеличиваться, вызывая нагнетание или всасывание воды. Для всасывания и подачи водной среды используется специальное окно в днище цилиндрического блока, а также отверстие в распределительном диске. Дальше вода продвигается по каналам в корпусе насосного оборудования. В отличие от парового и радиально-поршневого насоса в таком аксиальном агрегате можно изменять величину хода поршней. Для этого необходимо изменить угол наклона цилиндрического блока. Это будет способствовать изменению показателя рабочего объёма насосного оборудования. Такие агрегаты можно назвать оборудованием с регулируемой подачей.

Преимущества и недостатки


В отличие от парового и радиально-поршневого агрегата аксиально-поршневые насосы имеют следующие преимущества:

  • Это довольно компактные агрегаты с небольшим весом. Однако, несмотря на это, они имеют довольно внушительную мощность и производительность.
  • Благодаря небольшим размерам рабочих деталей достигается малый момент инерции.
  • В агрегатах аксиального типа можно легко и быстро отрегулировать частоту вращения мотора.
  • Основное преимущество таких приборов перед другими агрегатами состоит в том, что они могут функционировать при высоком давлении. При этом во время работы наблюдается довольно высокая частота вращения. Кроме этого в процессе работы можно менять рабочий объём агрегата.
  • Ещё одним плюсом является то, что диапазон вращения прибора составляет 500-4000 об./мин. По этим характеристикам они значительно превосходят агрегаты радиального типа.
  • Эти насосы могут без проблем работать при давлении равном 35-40 мПа, чем намного лучше радиально-плунжерных приборов, которые имеют рабочее давление в пределах 30 мПа. При этом объёмные потери аксиальных насосов намного меньше и составляют 3-5 % от номинальной подачи.
  • Благодаря небольшим зазорам между поршнями и расточками обеспечивается высокая герметичность рабочих камер.
  • Преимущество состоит и в том, что вы можете регулировать направление и силу подачи жидкости.

Однако данные устройства имеют и некоторые недостатки, среди которых стоит отметить следующие:

  • Цена подобного оборудования немаленькая.
  • Очень сложная конструкция затрудняет ремонт и обслуживание агрегата.
  • Если эксплуатацию прибора проводить без соблюдения инструкции, могут возникать частые поломки, виной чему невысокая надёжность прибора.
  • Во время работы такого насоса вода подаётся и расходуется неравномерно, то есть происходит большая пульсация.
  • Во всей водопроводной системе с таким насосным оборудованием также наблюдается большая пульсация.
  • Из-за высокой сложности конструкции ремонт оборудования может занять довольно продолжительное время.
  • Чувствительность к загрязнённой рабочей среде. Для этого водную среду необходимо очищать от примесей размером не менее 10 мкм.
  • В отличие от шестерённых и пластинчатых агрегатов насосы аксиального типа издают больше шума при работе.

Видео об особенностях устройства и работы аксиально-поршневого насоса:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Практическая работа

Тема: Гидравлические двигатели.

Содержание отчета

  • 4. Вывод

1. Пластинчатый гидравлический двигатель

Цель: Изучить конструкцию и принцип действия гидравлических двигателей.

Пластинчатый гидравлический двигатель - роторный объёмный гидравлический двигатель, вытеснителями в которой являются две и более пластин.

Устройство и принцип действия

Изготавливают пластинчатые гидромашины однократного действия и двукратного действия. Известны также гидромашины многократного действия . В машинах однократного действия за один оборот вала гидромашины процесс всасывания и нагнетания осуществляется один раз, в машинах двукратного действия - два раза.

Принцип работы насоса однократного действия состоит в следующем. При сообщении вращающего момента валу насоса ротор гидромашины приходит во вращение. Под действием центробежной силы пластины прижимаются к корпусу статора, в результате чего образуется две полости, герметично отделённых друг от друга. Объём одной из полостей постепенно увеличивается, а одновременно с этим объём другой полости постепенно уменьшается.

Изменение рабочего объёма осуществляется путём изменения эксцентриситета - величины смещения оси ротора относительно оси статора.

Пластинчатые гидромашины способны работать при давлениях до 14 МПа, рекомендуемые частоты вращения обычно лежат в пределах 1000-1500 об/мин.

В сравнении с шестерёнными, пластинчатые гидромашины создают более равномерную подачу, а в сравнении с роторно-поршневыми и поршневыми гидромашинами - дешевле, проще по конструкции и менее требовательны к фильтрации рабочей жидкости.

Недостатки

· Сложность конструкции и низкая ремонтопригодность;

· Довольно низкие рабочие давления;

· Залипание пластин при низких тепмературах.

2. Радиально поршневой гидравлический двигатель

Радиально-плунжерная гидромашина - один из видов объёмных роторных гидромашин.

Данный вид гидромашин чаще используется в режиме гидромотора, чем в режиме насоса. В том числе, широкое распространение получили высокомоментные радиально-плунжерные гидромоторы, в качестве которых используются радиально-плунжерные или радиально-поршневые гидромашины многократного действия. Гидромашина многократного действия - это такая гидромашина, у которой процесс всасывания и нагнетания за один оборот вала гидромашины осуществляется несколько раз. Показанные на рисунках гидромашины являются гидромашинами однократного действия. По конструктивному исполнению гидромашины выполняют как с поршнями, направленными от центра гидромашины, так и поршнями, направленными к центру гидромашины.

Гидромашины с плунжерами, направленными от центра машины, способны работать при меньших максимальных оборотах чем аксиально-плунжерные из-за бомльшего момента инерции и возможной неуравновешенности вращающихся частей. Частоты вращения не превышают у большинства радиально-поршневых гидромашин данного типа 1500 об/мин, тогда как у аксиально-плунжерных гидромашин этот показатель достигает значения 4000 об/мин. Данный вид гидромашин способен работать при давлениях до 35 МПа. Это несколько меньше, чем у аксиально-плунжерных гидромашин. Однако, есть данные, что как аксиально-плунжерные гидромашины, так и радиально-плунжерные способны работать при давлениях до 100 МПа. Если радиально-плунжерную гидромашину выполняют регулируемой, то изменение рабочего объёма и параметра регулирования осуществляется путём изменения эксцентриситета детали, которая приводит в движение поршни (кулачка, ротора, кривошипно-шатунного механизма).

3. Аксиально-поршневой гидравлический двигатель

Аксиально-плунжерная гидромашина - один из видов роторно-поршневых гидромашин. Последние не следует относить к поршневым гидромашинам.

Конструктивные особенности

Аксиально-плунжерные и аксиально-поршневые гидромашины отличаются тем, что в первых в качестве вытеснителей используются плунжеры, а во вторых - поршни.

Наибольшее распространение получили аксиально-плунжерные гидромашины.

Выпускают гидромашины с наклонным диском (шайбой) и с наклонным блоком цилиндров.

Одним из достоинств аксиально-плунжерных гидромашин является возможность регулирования рабочего объёма.

Изменение рабочего объёма осуществляется путём изменения угла наклона диска или угла наклона оси блока цилиндров. Максимальный угол наклона у машин с наклонным диском ограничен 15-18°. Это ограничение связано с ростом контактных нагрузок между деталями гидромашины. В то же время, в машинах с наклонным блоком рост угла наклона ограничен только конструктивными параметрами, и может достигать 40° (обычно до 25°).

Но насосы с наклонным диском имеют то преимущество, что при их регулировании легко осуществляется реверс подачи (при работе в режиме насоса) или реверс направления вращения вала (при работе в режиме гидромотора); в гидромашинах с наклонным блоком реверс осуществить нельзя.

Во избежание резонансных явлений и для снижения пульсаций подачи и расхода количество плунжеров всегда выполняют нечётным.

Принцип работы

При вращении вала гидромашины (рис.1) плунжер, находящийся внизу (в нижней мёртвой точке), перемещается наверх, и одновременно совершает движение вдоль оси насоса "от края" блока цилиндров - происходит всасывание. Одновременно с этим тот плунжер, который находился вверху, перемещается вниз, и совершает движение "к краю" блока цилиндров - происходит нагнетание. Плунжеры, осуществляющие в данный момент нагнетание, соединены вместе одной канавкой - и образуют полость высокого давления; а те плунжеры, которые осуществляют в данный момент всасывание, соединены вместе другой канавкой - и образуют полость низкого давления. Полости высокого и низкого давления отделены друг от друга. Точка, в которой плунжер переходит от полости высокого давления к полости низкого давления, называется верхней мёртвой точкой, а там где происходит обратный переход, расположена нижняя мёртвая точка. В момент перехода плунжера через одну из мёртвых точек образуются запертые объёмы.

Достоинства

· способность работать при высоких давлениях;

· принципиальная возможность реализовать регулируемость рабочего объёма;

· бомльшая частота вращения (в сравнении с радиально-плунжерными гидромашинами).

Недостатки

· сложность конструкции и связанная с этим низкая надёжность;

· высокая стоимость данного типа гидромашин;

· большие пульсации подачи (для насосов) и расхода (для гидромотора), и как следствие, большие пульсации давления в гидросистеме.

гидравлический двигатель поршневой пластинчатый

4. Вывод

По окончанию практической работы № 3 изучил конструкцию и принцип работы различных видов гидравлических насосов.

Размещено на Allbest.ru

Подобные документы

    Коэффициент полезного действия теплового двигателя. Основные элементы конструкции и функции газовой турбины. Поршневые двигатели внутреннего сгорания, их классификация. Два основных класса реактивных двигателей и характеризующие их технические параметры.

    презентация , добавлен 24.10.2016

    История создания тепловых двигателей и общий принцип их действия. Виды тепловых двигателей: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Использование современных альтернативных источников энергии.

    презентация , добавлен 23.02.2011

    Исследования двигателей Стирлинга для солнечных, космических и подводных энергетических установок, разработка базовых лабораторных и опытных двигателей. Основной принцип работы двигателя Стирлинга, его типы и конфигурации, недостатки и преимущества.

    реферат , добавлен 26.10.2013

    Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.

    курсовая работа , добавлен 25.02.2010

    История создания и принцип работы электродвигателя. Способы возбуждения электрических двигателей постоянного тока. Основные типы двигателей и их разновидности. Конструкция двухтактного двигателя внутреннего сгорания. Принцип работы зажигания двигателя.

    презентация , добавлен 05.05.2011

    Преобразование тепловой энергии в механическую турбинными и поршневыми двигателями. Кривошипный механизм поршневых двигателей внутреннего сгорания. Схема газотурбинной установки. Расчет цикла с регенерацией теплоты и параметров необратимого цикла.

    курсовая работа , добавлен 20.11.2012

    Общая теория электрических ракетных двигателей. Особенности двигательных установок с малой тягой. Электрические ракетные двигатели и перспективные двигательные установки других типов. Ионный двигатель и его основные элементы. Контактные ионные источники.

    курсовая работа , добавлен 01.02.2010

    Изобретение первого парового двигателя Томасом Ньюкоменом. Использование в первых паровозах и машинах. Эволюция в индустриальную эпоху. Двигатели внутреннего сгорания. Увеличение среднего количества полезного действия. Самый сильный двигатель в мире.

    презентация , добавлен 17.02.2016

    Определение понятия электропривода, классификация и типы двигателей мехатронных систем. Мотор-редукторы: коллекторные двигатели постоянного тока. Устройство электродвигателя и принцип его работы, область его использования. Расчёт ленточного конвейера.

    курсовая работа , добавлен 04.04.2012

    Тепловой двигатель как устройство, в котором внутренняя энергия преобразуется в механическую, история его появления. Типы двигателя внутреннего сгорания. Схемы работы двигателей. Экологические проблемы использования тепловых машин и пути их решения.

Гидромотор - это объемный гидродвигатель вращательного движения.

Гидромотор предназначен для превращения энергии потока жидкости во вращательную энергиею выходного звена. Получается, что гидравлический мотор - выполняют функцию обратную функции насоса. Если провести аналогию с электрооборудованием, то гидромтор по назначению схож с электродвигателем, а насос - с генератором.

Существуют шестеренные, винтовые, пластинчатые и поршневые (радиальные и аксиальные) гидромоторы. Однако конструкции гидравлических моторов обычно имеют некоторые отличия от конструкций соответствующих моторов.

Например, в пластинчатых гидромоторах установлены пружины, которые выталкивают пластины и тем самым обеспечивают пуск мотора.

В аксиально-поршневых моторах угол наклона блока составляет порядка 40 градусов, тогда как в насосах он обычно равен 30 градусам. В шестеренных гидромотрах уплотнения устанавливаются с расчетом на наличие давления на входе, в насосах же избыточное давление в линии всасывания не предусматривается.

Типы гидравлических моторов

Гидравлические моторы классифицируют по различным признакам.

    По движению рабочих звеньев
  • Роторные
  • Безроторные
    По числу рабочих звеньев
  • Однорядные
  • Многорядные
    По возможности регулирования
  • Регулируемые
  • Нерегулируемые
    По возможности реверсирования
  • Реверсивные
  • Нереверсивные
    По циклу работы
  • Однократного действия
  • Многократного действия
    Вид конструкции распределения
  • С клапанная
  • С крановая
  • С золотниковая
    По виду рабочих звеньев
  • Винтовые
  • Ролико-лопастные
  • Шестеренные
    • С внутренним (наружним) зацеплением
    • С внешним зацеплением
  • Шиберные
    • Пластинчатые
    • Фигурно-шиберные
  • Поршневые
    • Аксиально-поршневые
      • С наклонным диском (шайбой)
      • С профильным диском (шайбой)
      • С наклонным блоком
    • Радиально-поршневые
      • Кривошипные
      • Кулачковые

Обозначение гидромоторов

Гидромотор обозначается на гидравлических схемах следующим образом.