Из популярного американского блога Cracked.

Теория игр занимается тем, что изучает способы сделать лучший ход и в результате получить как можно больший кусок выигрышного пирога, оттяпав часть его у других игроков. Она учит подвергать анализу множество факторов и делать логически взвешенные выводы. Я считаю, её нужно изучать после цифр и до алфавита. Просто потому что слишком многие люди принимают важные решения, основываясь на интуиции, тайных пророчествах, расположении звёзд и других подобных. Я тщательно изучил теорию игр, и теперь хочу рассказать вам о её основах. Возможно, это добавит здравого смысла в вашу жизнь.

1. Дилемма заключенного

Берто и Роберт были арестованы за ограбление банка, не сумев правильно использовать для побега угнанный автомобиль. Полиция не может доказать, что именно они ограбили банк, но поймала их с поличным в украденном автомобиле. Их развели по разным комнатам и каждому предложили сделку: сдать сообщника и отправить его за решетку на 10 лет, а самому выйти на свободу. Но если они оба сдадут друг друга, то каждый получит по 7 лет. Если же никто ничего не скажет, то оба сядут на 2 года только за угон автомобиля.

Получается, что, если Берто молчит, но Роберт сдает его, Берто садится в тюрьму на 10 лет, а Роберт выходит на свободу.

Каждый заключенный - игрок, и выгода каждого может быть представлена в виде «формулы» (что получат они оба, что получит другой). Например, если я ударю тебя, моя выигрышная схема будет выглядеть так (я получаю грубую победу, ты страдаешь от сильной боли). Поскольку у каждого заключенного есть два варианта, мы можем представить результаты в таблице.

Практическое применение: Выявление социопатов

Здесь мы видим основное применение теории игр: выявление социопатов, думающих лишь о себе. Настоящая теория игр - это мощный аналитический инструмент, а дилетантство часто служит красным флагом, с головой выдающим человека, лишенного понятия чести. Люди, делающие расчеты интуитивно, считают, что лучше поступить некрасиво, потому что это приведет к более короткому тюремному сроку независимо от того, как поступит другой игрок. Технически это правильно, но только если вы недальновидный человек, ставящий цифры выше человеческих жизней. Именно поэтому теория игра так популярна в сфере финансов.

Настоящая проблема дилеммы заключенного в том, что она игнорирует данные. Например, в ней не рассматривается возможность вашей встречи с друзьями, родственниками, или даже кредиторами человека, которого вы посадили в тюрьму на 10 лет.

Хуже всего то, что все участники дилеммы заключенного действуют так, как будто никогда не слышали ней.

А лучший ход - хранить молчание, и через два года вместе с хорошим другом пользоваться общими деньгами.

2. Доминирующая стратегия

Это ситуация, при которой ваши действия дают наибольший выигрыш, независимо от действий оппонента. Что бы ни происходило - вы всё сделали правильно. Вот почему многие люди при «дилемме заключенного» считают: предательство приводит к «наилучшему» результату независимо от того, что делает другой человек, а игнорирование действительности, свойственное этому методу, заставляет всё выглядеть супер-просто.

Большинство игр, в которые мы играем, не имеет строго доминирующих стратегий, потому что иначе они были бы просто ужасны. Представьте, что вы всегда делали бы одно и то же. В игре «камень-ножницы-бумага» нет никакой доминирующей стратегии. Но если бы вы играли с человеком, у которого на руках надеты прихватки, и он мог показать только камень или бумагу, у вас была бы доминирующая стратегия: бумага. Ваша бумага обернет его камень или приведет к ничьей, и вы не сможете проиграть, потому что соперник не может показать ножницы. Теперь, когда у вас есть доминирующая стратегия, нужно быть дураком, чтобы попробовать что-нибудь другое.

3. Битва полов

Игры интереснее, когда у них нет строго доминирующей стратегии. Например, битва полов. Анджали и Борислав идут на свидание, но не могут выбрать между балетом и боксом. Анджали любит бокс, потому что ей нравится, когда льется кровь на радость орущей толпе зрителей, считающих себя цивилизованными только потому, что они заплатили за чьи-то разбитые головы.

Борислав хочет смотреть балет, потому что он понимает, что балерины проходят через огромное количество травм и сложнейших тренировок, зная, что одна травма может положить конец всему. Артисты балета - величайшие спортсмены на Земле. Балерина может ударить вас ногой в голову, но никогда этого не сделает, потому что ее нога стоит гораздо дороже вашего лица.

Каждый из них хочет пойти на своё любимое мероприятие, но они не хотят наслаждаться им в одиночестве, таким образом, получаем схему их выигрыша: наибольшее значение - делать то, что им нравится, наименьшее значение - просто быть с другим человеком, и ноль - быть в одиночестве.

Некоторые люди предлагают упрямо балансировать на грани войны: если вы, несмотря ни на что, делаете то, что хотите, другой человек должен подстроиться под ваш выбор или потерять все. Как я уже говорил, упрощённая теория игр отлично выявляет глупцов.

Практическое применение: Избегайте острых углов

Конечно, и у этой стратегии есть свои значительные недостатки. Прежде всего, если вы относитесь к вашим свиданиям как к «битве полов», она не сработает. Расстаньтесь, чтобы каждый из вас мог найти человека, который ему понравится. А вторая проблема заключается в том, что в этой ситуации участники настолько не уверены в себе, что не могут этого сделать.

По-настоящему выигрышная стратегия для каждого - делать то, что они хотят, а после, или на следующий день, когда они будут свободны, пойти вместе в кафе. Или же чередовать бокс и балет, пока в мире развлечений не произойдет революция и не будет изобретен боксерский балет.

4. Равновесие Нэша

Равновесие Нэша - это набор ходов, где никто не хочет сделать что-то по-другому после свершившегося факта. И если мы сможем заставить это работать, теория игр заменит всю философскую, религиозную, и финансовую систему на планете, потому что «желание не прогореть» стало для человечества более мощной движущей силой, чем огонь.

Давайте быстро поделим 100$. Вы и я решаем, сколько из сотни мы требуем и одновременно озвучиваем суммы. Если наша общая сумма меньше ста, каждый получает то, что хотел. Если общее количество больше ста, тот, кто попросил наименьшее количество, получает желаемую сумму, а более жадный человек получает то, что осталось. Если мы просим одинаковую сумму, каждый получает 50 $. Сколько вы попросите? Как вы разделите деньги? Существует единственный выигрышный ход.

Требование 51 $ даст вам максимальную сумму независимо от того, что выберет ваш противник. Если он попросит больше, вы получите 51 $. Если он попросит 50 $ или 51 $, вы получите 50 $. И если он попросит меньше 50 $, вы получите 51 $. В любом случае нет никакого другого варианта, который принесет вам больше денег, чем этот. Равновесие Нэша - ситуация, в которой мы оба выбираем 51 $.

Практическое применение: сначала думайте

В этом вся суть теории игр. Не обязательно выиграть и тем более навредить другим игрокам, но обязательно сделать лучший для себя ход, независимо от того, что подготовят для вас окружающие. И даже лучше, если этот ход будет выгоден и для других игроков. Это своего рода математика, которая могла бы изменить общество.

Интересный вариант этой идеи - распитие спиртного, которое можно назвать Равновесием Нэша с временной зависимостью. Когда вы достаточно много пьете, то не заботитесь о поступках других людей независимо от того, что они делают, но на следующий день вы очень жалеете, что не поступили иначе.

5. Игра в орлянку

В орлянке участвуют Игрок 1 и Игрок 2. Каждый игрок одновременно выбирает орла или решку. Если они угадывают, Игрок 1 получает пенс Игрока 2. Если же нет - Игрок 2 получает монету Игрока 1.

Выигрышная матрица проста…

…оптимальная стратегия: играйте полностью наугад. Это сложнее, чем вы думаете, потому что выбор должен быть абсолютно случайным. Если у вас есть предпочтения орла или решки, противник может использовать его, чтобы забрать ваши деньги.

Конечно, настоящая проблема здесь заключается в том, что было бы намного лучше, если бы они просто бросали один пенс друг в друга. В результате их прибыль была бы такой же, а полученная травма могла бы помочь этим несчастным людям почувствовать что-то, кроме ужасной скуки. Ведь это худшая игра из существующих когда-либо. И это идеальная модель для серии пенальти.

Практическое применение: Пенальти

В футболе, хоккее и многих других играх, дополнительное время - это серия пенальти. И они были бы интереснее, если бы строились на том, сколько раз игроки в полной форме смогут сделать «колесо», потому что это, по крайней мере, было бы показателем их физических способностей и на это было бы забавно посмотреть. Вратари не могут чётко определить движение мяча или шайбы в самом начале их движения, потому что, к огромному сожалению, в наших спортивных состязаниях роботы все еще не участвуют. Вратарь должен выбрать левое или правое направление и надеяться, что его выбор совпадет с выбором противника, бьющего по воротам. В этом есть что-то общее с игрой в монетку.

Однако обратите внимание, что это не идеальный пример сходства с игрой в орла и решку, потому что даже при правильном выборе направления вратарь может не поймать мяч, а нападающий может не попасть по воротам.

Итак, каково же наше заключение согласно теории игр? Игры с мячом должны заканчиваться способом «мультимяча», где каждую минуту игрокам один на один выводится дополнительный мяч/шайба, до получения одной из сторон определенного результата, который был показателем настоящего мастерства игроков, а не эффектным случайным совпадением.

В конце концов, теория игр должна использоваться для того, чтобы сделать игру умнее. А значит лучше.

Теория игр - теория математических моделей принятия оптимальных решений в условиях конфликта. Поскольку стороны, участвующие в большинстве конфликтов, заинтересованы в том, чтобы скрыть от противника свои намерения, принятия решений в условиях конфликта, как правило, происходит в условиях неопределенности. Наоборот, фактор неопределенности можно интерпретировать как противника субъекта, принимающего решение (тем самым принятие решений в условиях неопределенности можно понимать как принятие решений в условиях конфликта). В частности, многие утверждения математической статистики естественным образом формулируются как теоретико-игровые.

Теория игр - раздел прикладной математики, который используется в социальных науках (всего в экономике), биологии, политических науках, компьютерных науках (главным образом для искусственного интеллекта) и философии. Теория игр пытается математически зафиксировать поведение в стратегических ситуациях , в которых успех субъекта, делающего выбор зависит от выбора других участников. Если сначала развивался анализ игры, в которых один из противников выигрывает за счет других (игры с нулевой суммой), то впоследствии начали рассматривать широкий класс взаимодействий, которые были классифицированы по определенным критериям. На сегодняшний день «теория игр то вроде зонтика или универсальной теории для рациональной стороны социальных наук, где социальные можем понимать широко, включая как человеческих так не-человеческих игроков (компьютеры, животные, растения)» (Роберт Ауманн, 1987)

Эта отрасль математики получила определенное отражение в массовой культуре. В 1998 году американская писательница и журналисткаСильвия Назар опубликовала книгу о жизни Джона Нэша, нобелевского лауреата по экономике за достижения в теории игр, а в 2001 по мотивам книги снят фильм «Игры разума». (Таким образом, теория игр - одна из немногих отраслей математики в которой можно получить Нобелевскую премию). Некоторые американские телевизионные шоу, например, Friend or Foe , Alias или NUMBERS периодически используют в своих выпусках теорию игр.

Джон Нэш - математик,нобелевский лауреат известен широкой общественности благодаря фильму Игры разума.

Понятие теории игр

Логической основой теории игр является формализация трех понятий, входящих в ее определение и являются фундаментальными для всей теории:

  • Конфликт,
  • Принятие решения в конфликте,
  • Оптимальность принятого решения.

Эти понятия рассматриваются в теории игр в самом широком смысле. Их формализации отвечают содержательным представлением о соответствующих объектах.

Если назвать участников конфликта коалициями действия (обозначив их множество как D, возможные действия каждой из коалиции действия - ее стратегиями (множество всех стратегий коалиции действия K обозначается как S ), результаты конфликта - ситуациями (множество всех ситуаций обозначается как S ; считается, что каждая ситуация складывается вследствие выбора каждой из коалиций действия некоторой своей стратегии, так, что ), заинтересованные стороны - коалициями интересов (их множество - I) и, наконец, говорить о возможных преимуществах для каждой коалиции интересов K одной ситуации s " перед другим s "(этот факт обозначается как ), то конфликт в целом может быть описан как система

.

Такая система, представляющая конфликт, называется игрой . Конкретизации составляющих, задающих игру, приводят к различным классам игр.

Классификация игр

Отдельными классами бескоалиционный игр есть:

  • антагонистические игры, включая матричные игры и игры на единичном квадрате.
  • динамичные игры, в том числе дифференциальные игры,
  • рекурсивные игры,
  • игры на выживание

и другие, также относятся к бескоалиционный игр.

Математический аппарат

Теория игр широко использует различные математические методы и результаты теории вероятностей, классического анализа, функционального анализа (особенно важны теоремы о неподвижные точки), комбинаторной топологии, теории дифференциальных и интегральных уравнений, и другие. Специфика теории игр способствует разработке разнообразных математических направлений (например, теория выпуклых множеств, линейное программирование, и т.д.).

Принятием решения в теории игр считается выбор коалицией действия, или, в частности, выбор игроком некоторой своей стратегии. Этот выбор можно представить себе в виде одноразового действия и возводить формально к выбору элемента из множества. Игры с таким пониманием выбора стратегий называются играми в нормальной форме . Им противопоставляются динамичные игры, в которых выбор стратегии является процессом, который происходит в течение некоторого времени, которое сопровождается расширением и сужением возможностей, получением и потерей информации о текущем состоянии дел, и т.п.. Формально, стратегией в такой игре есть функция, определенная на множестве всех информационных состояний субъекта, принимающего решения. Некритическое использование «свободы выбора» стратегий может приводить к парадоксальным явлениям.

Оптимальность и развязки

Вопрос о формализации понятия оптимальности является весьма сложным. Единое представление об оптимальности в теории игр отсутствует, поэтому приходится рассматривать несколько принципов оптимальности. Область возможности применения каждого из принципов оптимальности, используемых в теории игр, ограничивается сравнительно узкими классами игры, или же касается ограниченных аспектов их рассмотрения.

В основе каждого из этих принципов лежат некоторые интуитивные представления о оптимум, как о чем-то «устойчивое», или «справедливое». Формализация этих представлений дает требованиях, предъявляемых к оптимуму и имеющих характер аксиом.

Среди этих требований могут оказаться такие, которые противоречат друг другу (например, можно показать конфликты, в которых стороны вынуждены довольствоваться малыми выигрышами, поскольку крупных выигрышей можно достичь только в условиях неопределенных ситуаций); поэтому в теории игр не может быть сформулирован единый принцип оптимальности.

Ситуации (или множества ситуаций), которые удовлетворяют в некоторой игре те или иные требования оптимальности, называются решениями этой игры. Так как представление об оптимальности не однозначны, имело развязки игр в разных смыслах. Создание определений решений игры, доведение их существования и разработка путей их фактического поиска - три основные вопросы современной теории игр. Близкими к ним есть вопросы о единственности решений игр, о существовании в тех или иных классах игр решений, которые имеют некоторые заранее определенные свойства.

История

Как математическая дисциплина, теория игр зародилась одновременно с теорией вероятностей в 17 веке, но в течение почти 300 лет почти не развивалась. Первой существенной работой по теории игр следует считать статью Дж. фон Неймана «К теории стратегических игр» (1928), а с выходом в свет монографии американских математиков Дж. фон Неймана и О. Моргенштерна «Теория игр и экономическое поведение» (1944), теория игр сформировалась как самостоятельная математическая дисциплина. В отличие от других отраслей математики, имеющих преимущественно физическое, или физико-технологическое происхождение, теория игр с самого начала своего развития была направлена на решение задач, возникающих в экономике (а именно в конкурентной экономике).

В дальнейшем, идеи, методы и результаты теории игр стали применять в других областях знаний, имеющих дело с конфликтами: в военном деле, в вопросах морали, при изучении массового поведения индивидов, имеющих различные интересы (например, в вопросах миграции населения, или при рассмотрении биологической борьбы за существование). Теоретико-игровые методы принятия оптимальных решений в условиях неопределенности могут иметь широкое применение в медицине, в экономическом и социальном планировании и прогнозировании, в ряде вопросов науки и техники. Иногда теорию игр относят к математическому аппарату кибернетики, или теории исследования операций.

В данной статье рассматривается применение теории игр в экономике. Теория игр является разделом математической экономики. Она разрабатывает рекомендации по рациональному действию участников процесса при несовпадении их интересов. Теория игр помогает предприятиям принять оптимальное решение в условиях конфликтной ситуации.

  • Активные операции коммерческих банков и их бухгалтерский учет
  • Совершенствование формирования фонда капитального ремонта в многоквартирных домах
  • Нормативно-правовое регулирование вопросов оценки качества предоставляемых государственных (муниципальных) услуг в России

Теория игр и экономика неразрывно связаны друг другом, так как методы решения задач теории игр помогают определить наилучшую стратегию различных экономических ситуаций. Так как же характеризуется понятие «теория игр»?

Теория игр представляет собой математическую теорию принятия решений в условиях конфликта. Теория игр есть важная часть теории исследования операций, изучающая вопросы принятия решений в конфликтных ситуациях .

Теория игр является разделом математической экономики. Целью теории игр является разработка рекомендаций по рациональному действию участников процесса при несовпадении их интересов, т. е. в условиях конфликтной ситуации. Игра является моделью конфликтной ситуации. Игроками в экономике являются партнеры, которые принимают участие в конфликте. Результат конфликта – выигрыш или проигрыш .

В общем, конфликт имеет место быть в разных областях человеческого интереса: в экономике, социологии, политологии, биологии, кибернетике, военном деле. Чаще всего теория игр и конфликтные ситуации применяется в экономике. Для каждого игрока присутствует определенный набор стратегий, которые игрок может применить. Пересекаясь, стратегии нескольких игроков создают определенную ситуацию, где каждый игрок получает определенный результат (выигрыш или проигрыш). При выборе стратегии важно учитывать не только получение максимального выигрыша для себя, но так же возможные шаги противника, и их влияние на ситуацию в целом.

Чтобы повысить качество, а также эффективность принимаемых экономических решений в условиях рыночных отношений и неопределенности разумно могут применяться методы теории игр.

В экономических ситуациях игры могут иметь полную информацию или же неполную. Чаще всего экономисты сталкиваются с неполной информацией для принятия решений. Поэтому необходимо принимать решения в условиях неопределенности, а также в условиях определенного риска. При решении экономических задач (ситуаций) обычно сталкиваются с одноходовыми и многоходовыми играми. Количество стратегий может быть конечным или же бесконечным .

Теория игр в экономике использует, в основном, матричные или прямоугольные игры, для которых составляют платежную матрицу (Таблица 1).

Таблица 1. Платежная матрица игры

Следует дать определение данному понятию. Платежная матрица игры – это матрица, которая показывает платеж одного игрока другому при условии, что первый игрок выбирает стратегию Аi, второй – Вi .

Какую цель за собой преследует решение экономических задач с помощью теории игр? Решить экономическую задачу – это найти оптимальную стратегию первого и второго игрока и найти цену игры.

Решим экономическую задачу, составленную мной.

В городе Г имеются две конкурирующие компании («Сладкий мир» и «Сладкоежка»), которые занимаются производством шоколада. Обе компании могут производить молочный шоколад и горький шоколад. Стратегию компании «Сладкий мир» обозначим Аi, компании «Сладкоежка» - Вi. Рассчитаем эффективность для всех возможных вариантов сочетаний стратегий компаний «Сладкий мир» и «Сладкоежка» и построим платежную матрицу (Таблица 2).

Таблица 2. Платежная матрица игры

У данной платежной матрицы нет седловой точки, поэтому она решается в смешанных стратегиях.

U1 = (а22-а21) / (а11+а22-а21-а12) = (6-3) / (5+6-3-4) =0,75.

U2 = (а11-а12) / (а11+а22-а21-а12) = (5-4) / (5+6-3-4) = 0,25.

Z1 = (а22-а12) / (а11+а22-а21-а12) = (6-4) / (5+6-3-4) = 0,4.

Z2 = (а11-а21) / (а11+а22-а21-а12) = (5-3) / (5+6-3-4) = 0,6.

Цена игры = (а11*а22-а12*а21) / (а11+а22-а21-а12) = (5*6-4*3) / (5+6-3-4) = 4,5.

Мы можем сказать, что компании «Сладкий мир» следует распределить производство шоколада следующим образом: 75% от общего объема производства отдать производству молочного шоколада, а 25% - производству горького шоколада. Компания «Сладкоежка» на 40% должна производить молочный шоколад и на 60% - горький.

Теория игр занимается принятием решений в условиях конфликтных ситуаций двумя и более разумными противниками, каждый из которых стремится оптимизировать свои решения за счет других .

Таким образом, в данной статье было рассмотрено применение теории игр в экономике. В экономике часто возникают моменты, когда необходимо принять оптимальное решение, а вариантов принятия решений несколько. Теория игр помогает принять решение в условиях конфликтной ситуации. Теория игр в экономике может помочь определить оптимальный выпуск продукции для предприятия, оптимальную выплату страховых взносов и т. п.

Список литературы

  1. Белолипецкий, А. А. Экономико-математические методы [Текст] : учебник для студ. Высш. Учеб. Заведений / А. А. Белолипецкий, В. А. Горелик. – М.: Издательский центр «Академия», 2010. – 368 с.
  2. Лугинин, О. Е. Экономико-математические методы и модели: теория и практика с решением задач [Текст] : учебное пособие / О. Е. Лугинин, В. Н. Фомишина. – Ростов н/Д: Феникс, 2009. – 440 с.
  3. Невежин, В. П. Теория игр. Примеры и задачи [Текст] : учебное пособие / В. П. Невежин. – М.: ФОРУМ, 2012. – 128 с.
  4. Слива, И. И. Применение метода теории игр для решения экономических задач [Текст] / И. И. Слива // Известия Московского государственного технического университета МАМИ. – 2013. - №1. – С. 154-162.

Материал из Википедии - свободной энциклопедии

    1 История

    2 Представление игр

    • 2.1 Экстенсивная форма

      2.2 Нормальная форма

      2.3 Характеристическая функция

    3 Применение теории игр

    • 3.1 Описание и моделирование

      3.2 Нормативный анализ (выявление наилучшего поведения)

    4 Типы игр

    • 4.1 Кооперативные и некооперативные

      4.2 Симметричные и несимметричные

      4.3 С нулевой суммой и с ненулевой суммой

      4.4 Параллельные и последовательные

      4.5 С полной или неполной информацией

      4.6 Игры с бесконечным числом шагов

      4.7 Дискретные и непрерывные игры

      4.8 Метаигры

Тео́рия игр - математический метод изучения оптимальныхстратегий виграх . Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, ихресурсах и их возможных поступках.

Теория игр - это раздел прикладной математики , точнее -исследования операций . Чаще всего методы теории игр находят применение вэкономике , чуть реже в другихобщественных науках -социологии ,политологии ,психологии ,этике и других. Начиная с1970-х годов её взяли на вооружениебиологи для исследования поведения животных итеории эволюции . Очень важное значение она имеет дляискусственного интеллекта икибернетики , особенно с проявлением интереса кинтеллектуальным агентам .

История исследований по теории игр

Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии , которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в.А. Курно иЖ.Бертраном . В начале XX в.Э.Ласкер , Э.Цермело, Э.Борель выдвигают идею математической теории конфликта интересов.

Математическая теория игр берёт своё начало из неоклассической экономики . Впервые математические аспекты и приложения теории были изложены в классической книге1944 года Джона фон Неймана иОскара Моргенштерна «Теория игр и экономическое поведение» (англ. Theory of Games and Economic Behavior ).

Эта область математики нашла некоторое отражение в общественной культуре. В 1998 году американская писательница ижурналистка Сильвия Назар издала книгу о судьбеДжона Нэша ,и учёного в области теории игр; а в2001 по мотивам книги был снят фильм «Игры разума ». Некоторые американские телевизионные шоу, например, «Friend or Foe », «Alias» или «NUMB3RS», периодически ссылаются на теорию в своих эпизодах.

Дж. Нэш в 1949 году пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике.Дж. Нэш после окончания Политехнического института Карнеги с двумя дипломами - бакалавра и магистра - поступил вПринстонский университет , где посещал лекцииДжона фон Неймана . В своих трудахДж. Нэш разработал принципы «управленческой динамики». Первые концепции теории игр анализировалиантагонистические игры , когда есть проигравшие и выигравшие за их счет игроки. Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия«равновесие по Нэшу» , или «некооперативное равновесие», в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение. Эти работыДж. Нэша сделали серьёзный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования.Дж. Нэш показывает, что классический подход к конкуренцииА.Смита , когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других.

Хотя теория игр первоначально и рассматривала экономические модели, вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике ,технике ,антропологии . Во времяВторой мировой войны и сразу после нее теорией игр серьёзно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.

В 1960-1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 - 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.

Большим вкладом в применение теории игр стала работа Томаса Шеллинга ,нобелевского лауреата по экономике 2005 г. «Стратегия конфликта». Т.Шеллинг рассматривает различные «стратегии» поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов вконфликтологии (это психологическая дисциплина) и в управлении конфликтами в организации (теория менеджмента). В психологии и других науках используют слово «игра» в других смыслах, нежели чем в математике. Некоторые психологи и математики скептически относятся к использованию этого термина в других смыслах, сложившихся ранее. Культурологическое понятие игры было дано в работеЙохана Хёйзинга Homo Ludens (статьи по истории культуры), автор говорит об использовании игр в правосудии, культуре, этике.. говорит о том, что игра старше самого человека, так как животные тоже играют. Понятие игры встречается в концепцииЭрика Бёрна «Игры, в которые играют люди, люди, которые играют в игры». Это сугубо психологические игры, основанные натрансакционном анализе . Понятие игры у Й.Хёзинга отличается от интерпретации игры в теории конфликтов и математической теории игр. Игры также используются для обучения в бизнес-кейсах, семинарахГ. П. Щедровицкого , основоположника организационно-деятельностного подхода. Во время Перестройки в СССРГ. П. Щедровицкий провел множество игр с советскими управленцами. По психологическому накалу ОДИ (организационно-деятельностные игры) были так сильны, что служили мощным катализатором изменений в СССР. Сейчас в России сложилось целое движение ОДИ. Критики отмечают искусственную уникальность ОДИ. Основой ОДИ сталМосковский методологический кружок (ММК) .

Математическая теория игр сейчас бурно развивается, рассматриваются динамические игры. Однако, математический аппарат теории игр - затратен . Его применяют для оправданных задач: политика, экономика монополий и распределения рыночной власти и т. п. Ряд известных ученых стализа вклад в развитие теории игр, которая описывает социально-экономические процессы.Дж. Нэш , благодаря своим исследованиям в теории игр, стал одним из ведущих специалистов в области ведения«холодной войны» , что подтверждает масштабность задач, которыми занимается теория игр.

Нобелевскими лауреатами по экономике за достижения в области теории игр и экономической теории стали:Роберт Ауманн ,Райнхард Зелтен ,Джон Нэш ,Джон Харсаньи ,Уильям Викри ,Джеймс Миррлис ,Томас Шеллинг ,Джордж Акерлоф ,Майкл Спенс ,Джозеф Стиглиц ,Леонид Гурвиц ,Эрик Мэскин ,Роджер Майерсон .

В результате изучения данной главы студент должен:

знать

Концепции игр, основанные на принципе доминирования, равновесие по Нэшу, что такое обратная индукция и т. д.; концептуальные подходы решения игры, значение понятия рациональности и равновесия в рамках стратегии взаимодействия;

уметь

Различать игры в стратегической и развернутой формах, строить "дерево игры"; формулировать игровые модели конкуренции для различных типов рынков;

владеть

Методами определения исходов игры.

Игры: основные понятия и принципы

Первую попытку создать математическую теорию игр предпринял в 1921 г. Э. Борель. Как самостоятельная область науки впервые теория игр была систематизированно изложена в монографии Дж. фон Неймана и О. Моргенштерна "Теория игр и экономическое поведение" в 1944 г. C тех пор многие разделы экономической теории (например, теория несовершенной конкуренции, теория экономического стимулирования и др.) развивались в тесном контакте с теорией игр . Теория игр с успехом применяется и в социальных науках (например, анализ процедур голосования, поиск равновесных концепций, определяющих кооперативные и некооперативные поведения лиц). Как правило, избиратели отводят кандидатов, представляющих крайние точки зрения, но при избрании одного из двух кандидатов, предлагающих различные компромиссные решения, возникает борьба. Даже идея Руссо об эволюции от "естественной свободы" к "гражданской свободе" формально соответствует с позиций теории игр точке зрения на кооперацию.

Игра – это идеализированная математическая модель коллективного поведения нескольких лиц (игроков), интересы которых различны, что и порождает конфликт. Конфликт необязательно предполагает наличие антагонистических противоречий сторон, но всегда связан с определенного рода разногласиями. Конфликтная ситуация будет антагонистической, если увеличение выигрыша одной из сторон на некоторую величину приводит к уменьшению выигрыша другой стороны на такую же величину и наоборот. Антагонизм интересов порождает конфликт, а совпадение интересов сводит игру к координации действий (кооперации).

Примерами конфликтной ситуации являются ситуации, складывающиеся во взаимоотношениях покупателя и продавца; в условиях конкуренции различных фирм; в ходе боевых действий и др. Примерами игр являются и обычные игры: шахматы, шашки, карточные, салонные и др. (отсюда и название "теория игр", и ее терминология).

В большинстве игр, возникающих из анализа финансово- экономических, управленческих ситуаций, интересы игроков (сторон) не являются строго антагонистическими ни абсолютно совпадающими. Покупатель и продавец согласны, что в их общих интересах договориться о купле-продаже, однако они энергично торгуются при выборе конкретной цены в пределах взаимной выгодности.

Теория игр – это математическая теория конфликтных ситуаций.

От реального конфликта игра отличается тем, что ведется по определенным правилам. Эти правила устанавливают последовательность ходов, объем информации каждой стороны о поведении другой и результат игры в зависимости от сложившейся ситуации. Правилами устанавливаются также конец игры, когда некоторая последовательность ходов уже сделана, и больше ходов делать не разрешается.

Теория игр, как и всякая математическая модель, имеет свои ограничения. Одним из них является предположение о полной (идеальной) разумности противников. В реальном конфликте зачастую оптимальная стратегия состоит в том, чтобы угадать, в чем противник глуп, и воспользоваться этой глупостью в свою пользу .

Еще одним недостатком теории игр является то, что каждому из игроков должны быть известны все возможные действия (стратегии) противника, неизвестно лишь то, каким именно из них он воспользуется в данной партии. В реальном конфликте это обычно не так: перечень всех возможных стратегий противника как раз и неизвестен, а наилучшим решением в конфликтной ситуации нередко будет именно выход за пределы известных противнику стратегий, "ошарашивание" его чем-то совершенно новым, непредвиденным.

Теория игр не включает элементов риска, неизбежно сопровождающего разумные решения в реальных конфликтах. Она определяет наиболее осторожное, перестраховочное поведение участников конфликта.

Кроме того, в теории игр находятся оптимальные стратегии по одному показателю (критерию). В практических ситуациях часто приходится принимать во внимание не один, а несколько числовых критериев. Стратегия, оптимальная по одному показателю, может быть неоптимальной по другим.

Сознавая эти ограничения и потому не придерживаясь слепо рекомендаций даваемых теорий игр, можно все же выработать вполне приемлемую стратегию для многих реальных конфликтных ситуаций.

В настоящее время ведутся научные исследования, направленные на расширение областей применения теории игр.

В литературе встречаются следующие определения элементов, составляющих игру.

Игроки – это субъекты, вовлеченные во взаимодействие, представимое в форме игры. В нашем случае это домохозяйства, фирмы, правительство. Однако в случае неопределенности внешних обстоятельств достаточно удобно представлять случайные составляющие игры, не зависящие от поведения игроков, как действия "природы".

Правила игры. Под правилами игры подразумеваются наборы действий или ходов, доступные игрокам. При этом действия могут быть самые разнообразные: решения покупателей об объемах покупаемых товаров или услуг; фирмы – об объемах выпуска продукции; уровень налогов, назначаемый правительством.

Определение исхода (результата) игры. Для каждой комбинации действий игроков исход игры устанавливается почти механически. Результатом может быть: состав потребительской корзины, вектор выпусков фирмы или набор других количественных показателей.

Выигрыши. Смысл, вкладываемый в понятие выигрыша, может различаться для разных видов игр. При этом надо четко различать выигрыши, измеренные на порядковой шкале (например, уровень полезности), и величины, для которых имеет смысл и интервальное сравнение (например, прибыль, уровень благосостояния).

Информация и ожидания. Неопределенность и постоянное изменение информации могут чрезвычайно серьезно влиять на возможные исходы взаимодействия. Именно поэтому необходимо учесть роль информации в развитии игры. В связи с этим на первый план выходит понятие информационного множества игрока, т.е. совокупности всех сведений о состоянии игры, которыми он обладает в ключевые моменты времени.

При рассмотрении доступа игроков к информации очень полезна интуитивно понятная идея общего знания, или общеизвестности, означающая следующее: какой-либо факт является общеизвестным, если все игроки осведомлены о нем и все игроки знают, что другие игроки также знают об этом.

Для случаев, в которых применения концепции общеизвестности недостаточно, вводится понятие индивидуальных ожиданий участников – представлений о том, как обстоит игровая ситуации на данном этапе.

В теории игр предполагается, что игра состоит из ходов, выполняемых игроками одновременно или последовательно.

Ходы бывают личными и случайными. Ход называется личным, если игрок сознательно выбирает его из совокупности возможных вариантов действий и осуществляет его (например, любой ход в шахматной игре). Ход называется случайным, если его выбор производится не игроком, а каким-либо механизмом случайного выбора (например, по результатам бросания монеты).

Совокупность ходов, предпринятых игроками от начала до окончания игры, называется партией.

Одним из основных понятий теории игр является понятие стратегии. Стратегией игрока называется совокупность правил, определяющих выбор варианта действий при каждом личном ходе в зависимости от ситуации, сложившейся в процессе игры. В простых (одноходовых) играх, когда в каждой партии игрок может сделать лишь по одному ходу, понятие стратегии и возможного варианта действий совпадают. В этом случае совокупность стратегий игрока охватывает все возможные его действия, а любое возможное для игрока i действие является его стратегией. В сложных (многоходовых играх) понятия "вариант возможных действий" и "стратегия" могут отличаться друг от друга.

Стратегия игрока называется оптимальной, если она обеспечивает данному игроку при многократном повторении игры максимально возможный средний выигрыш или минимально возможный средний проигрыш, независимо от того, какие стратегии применяет противник. Могут быть использованы и другие критерии оптимальности.

Возможно, что стратегия, обеспечивающая максимальный выигрыш, не обладает другим важным представлением оптимальности, как устойчивостью (равновесностью) решения. Решение игры является устойчивым (равновесным), если соответствующие этому решению стратегии образуют ситуацию, которую ни один из игроков не заинтересован изменить.

Повторим, что задача теории игр – нахождение оптимальных стратегий.

Классификация игр представлена на рис. 8.1.

  • 1. В зависимости от видов ходов игры подразделяются на стратегические и азартные. Азартные игры состоят только из случайных ходов, которыми теория игр не занимается. Если наряду со случайными ходами есть личные ходы или все ходы личные, то такие игры называются стратегическими.
  • 2. В зависимости от числа игроков игры подразделяются на парные и множественные. В парной игре число участников равно двум, в множественной – более двух.
  • 3. Участники множественной игры могут образовывать коалиции, как постоянные, так и временные. По характеру взаимоотношений игроков игры делятся на бескоалиционные, коалиционные и кооперативные.

Бескоалиционными называются игры, в которых игроки не имеют право вступать в соглашения, образовывать коалиции, и целью каждого игрока является получение по возможности наибольшего индивидуального выигрыша.

Игры, в которых действия игроков направлены на максимизацию выигрышей коллективов (коалиций) без последующего их разделения между игроками, называются коалиционными.

Рис. 8.1.

Исходом кооперативной игры является дележ выигрыша коалиции, который возникает не как следствие тех или иных действий игроков, а как результат их наперед определенных соглашений.

В соответствии с этим в кооперативных играх сравниваются по предпочтительности не ситуации, как это имеет место в бескоалиционных играх, а дележи; и сравнение это не ограничивается рассмотрением индивидуальных выигрышей, а носит более сложный характер.

  • 4. По количеству стратегий каждого игрока игры подразделяются на конечные (число стратегий каждого игрока конечно) и бесконечные (множество стратегий каждого игрока бесконечно).
  • 5. По количеству информации, имеющейся у игроков относительно прошлых ходов, игры подразделяются на игры с полной информацией (имеется вся информация о предыдущих ходах) и неполной информацией. Примерами игр с полной информацией могут быть шахматы, шашки и т.п.
  • 6. По виду описания игры подразделяются на позиционные игры (или игры в развернутой форме) и игры в нормальной форме. Позиционные игры задаются в виде дерева игры. Но любая позиционная игра может быть сведена к нормальной форме, в которой каждый из игроков делает только по одному независимому ходу. В позиционных играх ходы делаются в дискретные моменты времени. Существуют дифференциальные игры, в которых ходы делаются непрерывно. Эти игры изучают задачи преследования управляемого объекта другим управляемым объектом с учетом динамики их поведения, которая описывается дифференциальными уравнениями.

Существуют также рефлексивные игры, которые рассматривают ситуации с учетом мысленного воспроизведения возможного образа действий и поведения противника.

7. Если любая возможная партия некоторой игры имеет нулевую сумму выигрышей всех N игроков (), то говорят об игре с нулевой суммой. В противном случае игры называются играми с ненулевой суммой.

Очевидно, что парная игра с нулевой суммой является антагонистической, так как выигрыш одного игрока равен проигрышу второго, а следовательно, цели этих игроков прямо противоположны.

Конечная парная игра с нулевой суммой называется матричной игрой. Такая игра описывается платежной матрицей, в которой задаются выигрыши первого игрока. Номер строки матрицы соответствует номеру применяемой стратегии первого игрока, столбец – номеру применяемой стратегии второго игрока; на пересечении строки и столбца находится соответствующий выигрыш первого игрока (проигрыш второго игрока).

Конечная парная игра с ненулевой суммой называется биматричной игрой. Такая игра описывается двумя платежными матрицами, каждая для соответствующего игрока.

Приведем следующий пример. Игра "Зачет". Пусть игрок 1 – студент, готовящийся к зачету, а игрок 2 – преподаватель, принимающий зачет. Будем считать, что у студента две стратегии: A1 – хорошо подготовиться к зачету; A 2 – не подготовиться. У преподавателя имеется тоже две стратегии: B1 – поставить зачет; B 2 – не поставить зачет. В основу оценки значений выигрышей игроков можно положить, например, следующие соображения, отраженные в матрицах выигрышей:

Данная игра в соответствии с приведенной выше классификацией является стратегической, парной, бескоалиционной, конечной, описана в нормальной форме, с ненулевой суммой. Более кратко данную игру можно назвать биматричной.

Задача состоит в определении оптимальных стратегий для студента и для преподавателя.

Еще один пример хорошо известной биматричной игры "Дилемма заключенного".

Каждый из двух игроков располагает двумя стратегиями: A 2 и B 2 – стратегии агрессивного поведения, a A i и B i – миролюбивое поведение. Предположим, что "мир" (оба игрока миролюбивы) лучше для обоих игроков, чем "война". Случай, когда один игрок агрессивный, а другой миролюбивый, выгоднее агрессору. Пусть матрицы выигрышей игроков 1 и 2 в данной биматричной игре имеют вид

Для обоих игроков агрессивные стратегии A2 и B2 доминируют мирные стратегии Ах и B v Таким образом, единственное равновесие в доминирующих стратегиях имеет вид (А2, B 2), т.е. постулируется, что результатом некооперативного поведения является война. В то же время исход (A1, B1) (мир) дает больший выигрыш для обоих игроков. Таким образом, некооперативное эгоистическое поведение вступает в противоречие с коллективными интересами. Коллективные интересы диктуют выбор мирных стратегий. В то же время, если игроки не обмениваются информацией, война является наиболее вероятным исходом.

В данном случае ситуация (A1, B1) является оптимальной по Парето. Однако эта ситуация неустойчива, что ведет к возможности нарушения игроками установленного соглашения. Действительно, если первый игрок нарушит соглашение, а второй не нарушит, то выигрыш первого игрока увеличится до трех, а второго упадет до нуля и, наоборот. Причем каждый игрок, не нарушающий соглашение, теряет больше при нарушении соглашения вторым игроком, нежели в том случае, когда они оба нарушают соглашение.

Существует две основные формы игры. Игра в экстенсивной форме представляется как диаграмма типа "дерево" принятия решений, при этом "корень" соответствует точке начала игры, а начало каждой новой "ветки", называемое узлом, – состоянию, достигнутому на данном этапе при данных действиях, уже предпринятых игроками. Каждому конечному узлу – каждой точке окончания игры – ставится в соответствие вектор выигрышей, по одной компоненте для каждого игрока.

Стратегическая, иначе называемая нормальной, форма представления игры соответствует многомерной матрице, при этом каждое измерение (в двумерном случае строки и столбцы) включает набор возможных действий для одного агента.

Отдельная ячейка матрицы содержит вектор выигрышей, соответствующих данному сочетанию стратегий игроков.

На рис. 8.2 представлена экстенсивная форма игры, а в табл. 8.1 – стратегическая форма.

Рис. 8.2.

Таблица 8.1. Игра с одновременным принятием решений в стратегической форме

Существует достаточно подробная классификация составных частей теории игр. Одним из самых общих критериев такой классификации является деление теории игр на теорию некооперативных игр, в которых субъектами принятия решений являются собственно индивиды, и теорию кооперативных игр, в которых субъектами принятия решений являются группы, или коалиции индивидов.

Некооперативные игры обычно представляются в нормальной (стратегической) и развернутой (экстенсивной) формах.

  • Воробьев Η. Н. Теория игр для экоиомистов-кибериетиков. М.: Наука, 1985.
  • Вентцель Е. С. Исследование операций. М.: Наука, 1980.