В той же книге «Происхождение видов» Ч. Дарвин писал: «Если многочисленные виды, относящиеся к одному классу, начали свое существование одновременно , то это станет смертельным ударом для теории, которая предусматривает эволюцию от общего предка путем естественного отбора».

Современные ученые, детально исследовав ископаемые останки, убедились в том, что живые существа появились на Земле внезапно. В так называемом кембрийском слое были найдены останки трилобитов, губок, червей, морских звезд, улиток, плавающих ракообразных, головоногих моллюсков, членистоногих и др. Здесь же и чуть ниже нашли одноклеточных и бактерии. Наличие же ранее кембрия каких-либо многоклеточных является спорным моментом. Таким образом, очевидно, что многие виды, отличные друг от друга и уже имеющие совершенные организмы, существовали в одно и то же время и не имеют предков, от которых могли бы произойти. В геологии этот феномен называется Кембрийским взрывом.

Рис. Обитатели кембрийского периода

Кстати, эволюционистам также сложно однозначно ответить на вопрос, почему в современной природе, как и в природе кембрийского периода (который был якобы более 500 миллионов лет назад), существуют губки, черви, морские звезды, улитки, плавающие ракообразные и т. д.? Почему они за такой длительный период не эволюционировали в высшие формы? Если эволюция – это позитивное неизбежное движение вверх всего живого, то почему она не коснулась всех существ? Было бы логичнее, если бы в настоящее время на планете остался только один венец эволюции – человек!

Почему до сих пор на Земле одновременно живут амебы, насекомые, рыбы, земноводные, рептилии, млекопитающие, обезьяны и люди? Возможно, по той же причине, по которой до сих пор существует рыба целакант: она жила давным-давно, продолжает жить и сейчас. Если даже попытаться поверить в эволюцию, то придется ответить на вопрос: остановилась ли на сегодняшний день эволюция или нет? Однако при ответе на этот вопрос возникают другие вопросы, которые остаются без ответа.

Если предположить, что все живые создания от простых до сложных до сих пор находятся в процессе эволюции, то тут же придется объяснить, почему среди них отсутствуют живые переходные формы. Если же представить, что эволюция закончилась и существа, достигшие совершенства, давным-давно остановились в своем развитии, а остальные истреблены посредством естественного отбора, то останется необъяснимым факт, почему не существует в достаточном количестве мертвых промежуточных звеньев эволюции. А ведь останки переходных форм должны исчисляться триллионами и даже секстиллионами, будучи накапливаемы в земных недрах якобы миллионы лет.

Известный английский биолог Питер Холланд считает, что древняя вспышка эволюции многоклеточных животных, обычно называемая кембрийским взрывом, частично объясняется генетическими причинами . Необходимой предпосылкой для бурной эволюции двусторонне-симметричных животных была генная дупликация (или серия дупликаций), в результате которой возникли гены Hox и ParaHox - важные регуляторы индивидуального развития. Это не исключает действия экологических факторов на раннюю эволюцию животных, но заставляет обязательно учитывать также вклад чисто генетических новшеств.

Одной из самых больших загадок в истории жизни на Земле давно считается так называемый кембрийский взрыв - внезапное появление множества крупных групп животных примерно 540 миллионов лет назад, в начале кембрийского периода (слева вверху на рисунке). Иногда встречается мнение, что кембрийский взрыв - это артефакт, иллюзия, связанная не столько с появлением новых эволюционных ветвей, сколько с изменением условий захоронения ископаемых остатков. Но последние исследования подтверждают, что резкое ускорение эволюции на границе кембрия вполне реально. Кембрийский взрыв действительно был.

Чем он был вызван? Эта проблема вполне может соперничать по популярности, например, с проблемой вымирания динозавров или появления человеческого прямохождения. Есть много гипотез, объясняющих кембрийский взрыв внешними факторами: например, повышением уровня океана (с появлением множества мелководных продуктивных окраинных морей) или изменением химического состава морской воды (с повышением содержания кислорода, кальция, фосфатов). Однако за сто лет ни одна из этих версий не получила настолько надежного подтверждения, чтобы оказаться вне конкуренции.

Есть объяснения более сложные, многоступенчатые. Например, американский палеонтолог Дуглас Эрвин (Douglas Erwin) считает, что на границе кембрия некоторые животные научились активно рыться в морском дне, это вызвало насыщение грунта кислородом, расширило набор экологических ниш и привело к «цепной реакции видообразования». Но у этой гипотезы тоже есть слабые места. И самое главное - она упускает из виду начальный этап процесса. Животные, способные перерывать морское дно, должны были сначала возникнуть.

Знаменитый британский эволюционный генетик Питер Холланд (Peter Holland) предлагает для разнообразия поискать внутренние причины кембрийского взрыва, заключенные не в окружающей среде, а в самой структуре эволюционирующих организмов. Разумеется, Холланд прекрасно понимает, что и про экологические причины тоже нельзя забывать: такое сложное событие, как кембрийский взрыв, наверняка было вызвано многими факторами, а не одним. Скорее всего, там имел место каскад взаимосвязанных перемен. Тем не менее очевидно, что реакция любой системы на внешнее воздействие зависит не только от характера этого воздействия, но и от свойств самой системы. Что, если подойти к проблеме с этой стороны?

Правда, о внутреннем устройстве раннекембрийских, а тем более докембрийских животных мы пока знаем маловато. Но кое-что можно попытаться вычислить по косвенным данным, анализируя «поведение» организмов в макроэволюционном масштабе времени.

Что, собственно, на границе кембрия «взорвалось»? Стоит обратить внимание, что большая часть событий, в сумме составляющих кембрийский взрыв, связана с эволюцией не просто животных, а двусторонне-симметричных животных. Есть только четыре современных типа животных, которые не относятся к двусторонне-симметричным: губки, гребневики, пластинчатые, стрекающие (в прошлом году предположительно был найден представитель пятого типа, но эта находка еще толком не описана). Все остальные животные, включая червей, улиток, морских ежей, бабочек и нас самих, относятся к огромной группе двусторонне-симметричных (билатерий). Именно очень быстрое - в данном случае это значит «за считанные миллионы лет» - появление большого числа крупных ветвей двусторонне-симметричных животных делает начало кембрия совершенно уникальным моментом земной истории.

Что в этих животных особенного? Билатерии исключительно разнообразны, поэтому любая их краткая характеристика рискует погрешить неточностью. Тем не менее можно назвать четыре главных признака, отличающих билатерий от «небилатерий».

Передне-задняя ось. Типичное двусторонне-симметричное животное проводит жизнь в поступательном движении, при этом его тело имеет четко выраженные передний и задний конец - попросту говоря, голову и хвост. На переднем конце обычно находятся органы чувств и ротовой аппарат.

Центральная нервная система. У «небилатерий» нервной системы или нет вообще (губки, пластинчатые), или она относительно простая (гребневики, стрекающие). У билатерий нервная система, как правило, более мощная, часто она собрана в единую цепочку или тяж. Кроме того, для нее очень характерно продольное подразделение на отделы, самый передний из которых принято называть головным мозгом.

Сквозной кишечник. Билатериям свойствен кишечник в виде трубки, которая начинается ртом (обычно вблизи переднего конца тела) и оканчивается анальным отверстием (обычно вблизи заднего конца тела). Такой кишечник, как и нервная система, имеет продольное подразделение на отделы, например на переднюю, среднюю и заднюю кишку. Пища все время движется по сквозной кишке в одном направлении - от рта к анальному отверстию. Среди билатерий есть случаи отсутствия сквозного кишечника, но большинство их наверняка связано с вторичной потерей. У «небилатерий» сквозного кишечника в виде трубки не бывает никогда. Даже если их кишечная полость и имеет другие отверстия, кроме рта (у гребневиков, например), система однонаправленного протока пищи там отсутствует.

Три зародышевых листка. Зародыш многоклеточного животного, как правило, делится на слои клеток, называемые зародышевыми листками. У билатерий четко описано три зародышевых листка. У «небилатерий» зародышевые листки или вообще выделяются с трудом (губки, пластинчатые), или их скорее два, чем три (гребневики, стрекающие). По этой причине билатерий еще с XIX века принято считать трехслойными животными (триплобластами), а «небилатерий» двухслойными (диплобластами). Трехслойные животные отличаются от двухслойных наличием среднего зародышевого листка - мезодермы, из которой развивается, в частности, мышечная система. Поэтому такие животные способны к гораздо более активным и разнообразным движениям.

Известнейший британский палеонтолог Саймон Конвей Моррис (Simon Conway Morris) еще в 1993 году высказал мнение, что главное эволюционное содержание кембрийского взрыва заключалось в переходе с уровня двухслойных животных на уровень трехслойных, то есть двусторонне-симметричных . По Конвею Моррису, кембрийский взрыв в основном и состоял во «вторжении» в биосферу Земли трехслойных животных. Накопившиеся с тех пор палеонтологические данные вовсе не противоречат этой идее.

Как выглядел последний общий предок всех современных двусторонне-симметричных животных (latest common ancestor of all living bilaterians, LCAB)? Сравнительная анатомия и генетика развития дают достаточно оснований думать, что у этого общего предка была центральная нервная система, сквозной кишечник и расположенные по сторонам от него мышцы (возможно, даже сегментированные). Сокращения этих мышц давали возможность сложным образом менять форму тела, обеспечивая ползание, плавание или рытье - во всех случаях головой вперед.

Двусторонне-симметричные животные гораздо лучше приспособлены к активному перемещению в трехмерном пространстве, чем «небилатерии». Причем трехмерным пространством для них может быть не только толща воды, но и толща грунта. Не исключено, что именно рытье в грунте сыграло ключевую роль в эволюции ранних билатерий (как это и предполагает гипотеза Эрвина). Роющему двусторонне-симметричному существу удобно использовать грунт для питания: ил поступает в рот, проходит кишечную трубку, отдавая по пути питательные вещества, и выбрасывается через анус, оставаясь позади. Продвигаться сквозь грунт ему тоже удобно: для этого есть сильные мышцы, а кроме того, в мезодерме может образоваться еще и целомическая (вторичная) полость, которая заполнена жидкостью и выполняет функцию гидростатического скелета. В зоологии давно есть идея, что целом возник именно при переходе к рытью, в качестве гидроскелета, который стал тогда необходим .

Если этот сценарий соответствует действительности, то прекрасным образцом древней жизненной формы билатерий может послужить не кто иной, как дождевой червь. Он сменил морскую среду на почву, но сохранил в самом ярком виде все перечисленные признаки: сквозная кишка с ртом на переднем конце тела и анусом на заднем, сильные мышцы (сегментированные) и целом с явной опорной функцией.

В любом случае, о появлении двусторонне-симметричных животных можно сказать, что оно: (1) произошло во временной окрестности границы кембрия (никаких убедительных свидетельств намного более раннего существования билатерий нет) и (2) произвело настоящую революцию как в анатомии животного мира, так и в глобальной экологии.

Но что все-таки вызвало эту революцию? Вот тут-то и стоит подумать о том, какие внутренние изменения в организмах сделали ее возможной.

Как ни парадоксально, на нынешнем уровне развития биологии мы зачастую знаем больше про гены, которые были у древних животных, чем про анатомию этих животных. В таком случае с генов и стоит начать.

В первую очередь нас должны интересовать гены, контролирующие развитие (1) нервной системы, (2) кишечника и (3) мезодермальных структур, к которым относятся мышцы и целом (слева внизу на рисунке). Таких генов сейчас известно достаточно много. Как правило, они кодируют белки, способные включать или выключать другие гены, то есть являющиеся факторами транскрипции. К генам факторов транскрипции, способным влиять на развитие животных, относятся, например, Fox-гены, Pax-гены, гомеобоксные гены, T-боксные гены и гены «цинковых пальцев».

Поскольку «нельзя объять необъятное», Питер Холланд выбрал для исследования только одну из этих пяти групп генов - гомеобоксные гены. Они неплохо изучены, и, судя по всему, именно от них сильнее всего зависит развитие интересующих нас систем органов.

Когда заходит речь о гомеобоксных генах, многие биологи (и небиологи, интересующиеся научной литературой, тоже) первым делом вспоминают про гены семейства Hox. Строго говоря, это неправильно. Hox-гены - действительно важные регуляторы развития животных, они могут, скажем, определять отличия между разными сегментами тела. Но далеко не все гомеобоксные гены являются Hox-генами. Например, в геноме мухи-дрозофилы гомеобоксных генов больше сотни, а к семейству Hox из них относятся только восемь. В геноме человека гомеобоксных генов больше двухсот, а к семейству Hox из них относятся только 39. По выражению Холланда, Hox-гены - это «верхушка гомеобоксного айсберга».

Гомеобоксные гены, эволюция которых особенно интересна с точки зрения сравнительной анатомии, называются ANTP-генами (от мутации antennapedia). Это один из нескольких классов гомеобоксных генов, который, в свою очередь, делится на генные семейства. Кроме уже упомянутых Hox-генов, к ANTP-генам относятся ParaHox-гены, NK-гены, Dlx-гены, Evx-гены, Emx-гены, Dbx-гены, Msx-гены и ряд других.

Важная особенность генов семейства Hox состоит в том, что они склонны располагаться в хромосомах рядом друг с другом, образуя плотные группы - кластеры. Например, у дрозофилы все восемь Hox-генов собраны в один кластер. У человека таких кластеров четыре. У некоторых животных Hox-кластеры распадаются, но гораздо чаще они остаются более или менее целыми. Эта особенность имеет огромное значение и для регуляции работы Hox-генов, и для их эволюции. Именно расшифровка принципа работы Hox-кластера была главным достижением великого американского генетика Эдварда Льюиса (Edward B. Lewis), получившего за это в 1995 году Нобелевскую премию.

В 1990-х годах было открыто еще несколько генов, очень близких к Hox-генам по нуклеотидной последовательности, но не входящих в Hox-кластер и, по-видимому, имеющих какие-то другие функции. Эти гены получили общее название ParaHox. Более того, для трех таких генов - Gsx, Xlox (он же Pdx) и Cdx - было показано, что по своим последовательностям они даже ближе к некоторым Hox-генам, чем многие Hox-гены между собой. Откуда же они взялись? Эту загадку удалось частично решить в 1998 году, когда Питер Холланд с коллегами обнаружили, что ParaHox-гены тоже собраны в кластер - свой собственный. Правда, ParaHox-кластер намного меньше Hox-кластера: например, у ланцетника есть 15 Hox-генов и всего три ParaHox-гена. Но они наверняка имеют общее происхождение. Первую статью на эту тему так и назвали: «Кластер ParaHox - эволюционная сестра кластера Hox» .

Напрашивающийся здесь эволюционный сценарий выглядит так. У общего предка большинства современных животных был единый небольшой генный кластер, «предковый» и для Hox-генов, и для ParaHox-генов. Этот древний кластер называют ProtoHox-кластером. В некоторый момент ProtoHox-кластер удвоился вместе с частью хромосомы, в которой он находился. Такое генетическое событие называется тандемной дупликацией. Так возникли два родственных кластера, эволюция которых в дальнейшем пошла по-разному. Один из них стал Hox-кластером, а другой ParaHox-кластером (в середине рисунка вверху).

Есть и третье семейство ANTP-генов, склонных «кластеризоваться». Они называются NK-гены. У мухи-дрозофилы их пять, и они собраны в компактный кластер, совершенно отдельный от кластеров Hox и ParaHox. Эти гены - очень древние (они наверняка возникли раньше, чем животные стали двусторонне-симметричными) и очень консервативные, то есть они сохраняются у самых разных организмов, мало изменяясь. У ланцетника и у позвоночных NK-кластер распался, но входившие в него гены сохранились по отдельности. Более того, сравнительная геномика позволяет предположить, что NK-кластер дрозофилы (с пятью генами) является остатком более крупного кластера, который существовал в начале эволюции билатерий и включал не меньше восьми генов. Сейчас он находится в процессе медленного распада, и некоторые «отколовшиеся» от него гены уже давно существуют самостоятельно.

Статистический анализ посещаемости нашего сайта убедительно свидетельствует о том что наибольшим успехом пользуются научно-популярные статьи, причём материалы подобного рода просматриваются стабильно в течение длительного срока. Вот я и решил вновь поработать в этом русле, освещая тему, волнующую меня давно.

Вопрос о том как мог выглядеть мир в начале своего пути, будоражил людские умы с незапамятных времён. Долгое время загадки минувших эпох оставались тайнами за семью печатями, и за отсутствием научного знания человечество творило мифы, напоминая окружённого сказочными фантазиями ребёнка в колыбели. С развитием научного мировоззрения загадки никуда не исчезли, они лишь обрели конкретную форму. Одной из таких загадок является кембрийский взрыв.

Известно, что возраст геологических пород можно определить стратиграфически: более молодые слои, как правило, лежат выше древних. По окаменелым останкам вымерших организмов, насыщающих породы, возможно воссоздать картину постепенной эволюции жизни на Земле. Однако постепенность эта внезапно обрывается на глубинах, соответствующих слоям кембрийского периода «541,0 ± 1,0 млн. лет назад – 485,4 ± 1,9 млн. лет назад). Здесь обнаруживаются практически все современные типы многоклеточных животных, а дальше – как будто пустота, таинственный докембрий, словно произошёл акт сотворения… Этот феномен получил в науке название кембрийского взрыва.


Кембрий

Впрочем, в действительности отпечатки более древних животных учёными обнаруживались, однако длительное время их относили к кембрийским слоям и отождествляли с таксономическими группами организмов, сохранившихся до наших дней. Сталкивались с подобными артефактами и немецкие геологи в Намибии Южной Африки в 1908 г., и Р. Сприг в Эдиакаре Южной Австралии, в начале 30-х гг. XX в., выпустивший в 1947 г. работу «Раннекембрийские медузы хребта Флиндерс Южной Австралии». Избежать соблазна объяснить неизвестное давно привычным – для этого исследователю требуется определённое мужество. Лишь в 1952 г. академик АН СССР Б.С. Соколов установил существование венда – периода, предшествовавшего кембрию. «…впервые заняла свое истинное геохронологическое положение и так называемая эдиакарская фауна бесскелетных Metazoa, первоначально считавшаяся кембрийской… Вендский период (венд) назван по имени древнейшего славянского племени вендов (или венедов), обитавших к югу от Балтийского моря».

Борис Сергеевич Соколов

В связи с этим не могу удержаться, не поведать о курьёзном случае, когда в возрасте 5-ти лет выиграл в споре кандидата геологических наук по этому вопросу. Собрались у нас в очередной раз дома гости, по какому-то семейному торжеству. Завершалась совсем иная эпоха в жизни страны, и кажется теперь сном благополучный советский Баку со столами, полными фруктами и осетровой икры, с регулярными визитами друг к другу дружной оравы родственников. С двоюродным братом под руководством старшей двоюродной сестры мы играли в тот вечер в космонавтов, путешествуя с завязанными глазами по подоконникам и шкафам, представляя их другими планетами. И была у меня в детстве книжка по палеонтологии «Живое прошлое Земли», с геохронологической таблицей, в которую был включён вендский период… Дядя, тогда – кандидат геологических наук, спросил меня: какой период – самый первый, и я ответил что венд. А дядя отвечает: нет, кембрий. Я с ним не согласился. Через некоторое время, порывшись в какой-то литературе, дядя признал что появились новые научные данные, вызвав немалое веселье моих родителей.

Но вернёмся к кембрийскому взрыву. С т.зр. стратиграфической ответить о причинах наблюдаемого взрывного увеличения количества находок с переходом от докембрийских толщ к кембрийским – не так уж сложно. В кембрие появляются скелетные организмы: раковины, панцири, шипы – всё это прекрасно сохраняется в окаменелом виде. Докембрийские формы – мягкотелые и бесскелетные, требуется особое стечение обстоятельств, чтобы их отпечатки оставили память в летописи нашей планеты, и именно поэтому длительное время о них было ничего неизвестно. Поэтому теперь история органического мира Земли разделяется на 2 больших эона: фанерозой – эра явной жизни и криптозой – эра скрытой жизни. Но что явилось действительной причиной т.н. «скелетной революции?»

На этот счёт имеются очень разнообразные версии, интересующиеся всегда могут ознакомиться с ними в сети Интернет. Долгое время в отечественной литературе доминировала гипотеза о том, что увеличение по геологическим причинам концентрации в морской воде ионов Са2+, необходимых для построения защитных систем, таких как раковины, панцири, и т.д. – причина. Однако ещё в далеком уже теперь 2007 г. мне приходила на ум в форме интуитивных визуальных образов иная версия, представляющаяся более простой и логичной (следуя принципу бритвы Оккама о том, что кратчайший путь к истине – по прямой). Со временем стало ясно, что многие учёные, занимающиеся проблемой, последовали тем же путём, и ныне эта гипотеза упоминается даже в отечественных школьных учебниках биологии.

«…уже изучены тысячи экземпляров представителей вендской биоты, и ни на одном из них не обнаружены повреждения или следы укусов. Это означает, что в вендской экосистеме практически отсутствовали биотурбаторы, макроскопические трупоеды и хищники, измельчавшие пищу. Отмершая органика подвергалась только микробному разложению» . Кстати, в 2007 г. даже эти факты известны мне не были.

Итак, отношения хищник-жертва среди многоклеточных появляются лишь в кембрие (хотя имеются данные, и это закономерно, что зарождались они в эдиакаре (альтернативное название вендского периода). «С увеличением количества кислорода (в результате миллионов лет фотосинтетической активности водорослей – прим. авт.), одни животные начали потреблять других, провоцируя кембрийский взрыв через эскалацию «гонки вооружений» хищников и жертв» . Здесь имеется в виду что возникновение кислородного дыхания сделало возможным увеличение скорости обмена веществ и энергии, и тут моя научная интуиция нащупывает некоторый причинно-следственный провальчик: возникновение антагонистических экологических отношений хищник-жертва определяется прогрессивным, с т.зр. эффективности использования ресурсов, ароморфозом (ароморфоз – прогрессивный эволюционный скачок) – возникновением кислородного дыхания. Если же вспомнить такое понятие В.И. Вернадского как давление жизни, обусловленное её непрерывным стремлением умножать биомассу в процессе размножения с одной стороны и ограничиваемое имеющимися ресурсами с другой, то логично предположить что отношения хищник-жертва возникли как следствие описанных В.И. Вернадским принципов. Короче говоря, однажды их стало слишком много, а их оружие и то, чем они защищались друг от друга, хорошо превращается в камень…

Существует гипотеза, согласно которой вендские животные могли питаться за счёт обитающих в их теле микроскопических водорослей-симбионтов, которые в свою очередь потребляли солнечную энергию в процессе фотосинтеза, ведь многие представители эдиакарской биоты, похоже, являлись обитателями заливаемых солнечными лучами мелководий. Как дополнительный, такой тип питания встречается и у современных животных. В вендский период этот способ питания мог являться и основным. Мир вендобионтов, где никто никого не ел, Мак-Менамин назвал «садом Эдиакары», с явной аллюзией на сад Эдема. Подобная аллюзия возникала и у меня.

Каким же был мир венда? Сутки были на 3 часа короче, а год насчитывал 420 дней. Другие материки, другие океаны… Докембрийский мир красочно описывают Я.Е. Малаховская и А.Ю. Иванцов… «Дно обширных мелководных морей и низменные участки суши покрывали ковры бактериальных матов, кое-где колыхались леса лентовидных водорослей» . «Это было великое оледенение: по оценкам ученых, тогда в море льды заплывали даже в тропическую зону, а суша была покрыта ледниками едва ли не полностью. После окончания ледниковой эпохи возвращающиеся на мелководья сообщества микроорганизмов и водорослей уже включали многоклеточных животных. Среди этих мягкотелых существ встречались гиганты, достигавшие в длину полутора метров, и совсем малютки, не более 2-3 мм. Одни плавали или парили в толще воды, другие жили на дне: прикреплялись к нему, свободно лежали или ползали» . «Несмотря на столетнюю историю изучения вендских отпечатков, до последнего времени не было удовлетворительного ответа на вопрос, кем были вендские организмы – растениями, животными, грибами или принадлежали иному, не дожившему до наших дней царству. Большинство исследователей считает их многоклеточными животными, возможно, лишь из-за внешнего сходства отпечатков с некоторыми беспозвоночными» .

Чарнии (Сharnia masoni) вели прикреплённый образ жизни.

Трибрахидиум (Tribrachidium heraldicum) неподвижно сидел на дне, только слегка шевелились реснички на внешней поверхности. Реснички улавливали из воды мелкие органические частицы и перегоняли их от периферии в центр ко рту, возможно, даже к трём ртам.

Дикинсонии (Dickinsonia lissa, Dickinsonia cf. tenuis, Dickinsonia costata) ползали. Самая крупная, 1,5 м. длиной, происходит из Эдиакары.

Кимберелла (Kimberella quadrata) чем-то напоминала моллюсков.

Ёргия (Yorgia waggoneri) , брюшная сторона тела которой была покрыта чем-то похожим на мерцательный эпителий, опустившись на дно, выедала под собой участок субстрата (реснички эпителия захватывали и перемещали ко рту органические частицы). Потом она переплывала на другое место… После того как участок морского дна, на котором паслись животные, был засыпан осадком, их следы смогли сохраниться благодаря плотной органической плёнке, на которой они были как бы «выгравированы».

Вентогирус (Ventogyrus chistyakovi) , вероятно, плавал.

Перечислять всех в научно-популярной статье смысла нет…

Будучи подростком, в постсоветском Баку, я видел самый красивый сон в своей жизни. Мои пятки ласкали воды ночного доисторического моря. На дне среди скал – песок и флюоресцирующие сиреневым, зелёным, бирюзовым губки и отдалённо напоминающие коралловые полипы кустики… Груз сотен миллионов лет жестокой эволюции и последовавшей за ней человеческой истории – всё далеко впереди и наверху… Там же, на берегу вендского моря, меня охватили лёгкость и безмятежность.

Потом приплыл кембрийский трилобит. Я дотронулся до его панциря…

Наступал кембрий… Я проснулся.

Литература:

  1. Малаховская Я. Е., Иванцов А. Ю. Красочный иллюстрированный атлас древнейших мягкотелых животных вендского периода // Архангельск, изд-во ПИН РАН: 2003. 48 с.
  2. Соколов Б. С. Очерки становления венда // М.: КМК Лтд., 1997. 157 с.
  3. Mario Aguilera. Dawn of Carnivores Explains Animal Boom in Distant Past // UC San Diego News Center, July 30, 2013.
  4. Ястребов С. А. Кембрийский взрыв // Химия и Жизнь, 2016, №10.
  5. Mark A. S. McMenamin. The Garden of Ediacara // PALAIOS, Vol. 1, No. 2 (Apr., 1986), pp. 178-182

В формате видео:

Про кембрий:

Все выпуски «Эволюции»:

Кембрий или Кембрийский период — первый период эры и фанерозойского эона. Продолжался, начиная с 541 миллиона лет назад и заканчивая 485 миллионами лет назад, то есть на протяжении 56 миллионов лет. Чтобы не запутаться в эонах, эрах и периодах, используйте в качестве визуальной подсказки геохронологическую шкалу, которая находится .

Считается, что именно кембрий разделил всю историю Земли на «до и после». Вся история Земли до кембрия называется , история во время и после кембрийского периода называется . Учёные разделили историю таким образом потому, что в кембрии произошло необычное явление, которое известно как «». Данное явление заключается в том, что именно с этого периода археологи стали находить невероятно огромное количество останков доисторических животных. Некоторое время вообще считалось, что жизни до кембрия не существовало или существовало крайне мало (только в виде простейших бактерий), и только в кембрийском периоде, за относительно короткий промежуток времени, появилось великое многообразие животных. Это породило немало мифов, которые, что уж скрывать, ходят до сих пор. Кембрийским взрывом объясняют некоторые религиозные представления, а также различные мистификации или даже заселение Земли инопланетным разумом. Однако все эти мифы и мистификации не оправдывают себя с научной точки зрения, так как дальнейшие исследования вполне легко их разрушили и представили главную причину такого необычного явления.

Причины кембрийского взрыва

При дальнейших исследованиях оказалось, что кембрийский взрыв является не загадочным явлением порождения огромного многообразия жизни на Земле, что показывают большие скопления останков доисторических животных данного периода, а банальное появление у животных скелетной и костной системы. По этой причине кембрийский взрыв также называют «скелетной революцией» и «взрывом скелетной фауны». Дальнейшие раскопки и исследования показали, что жизнь в виде червей, полипов, медуз и других беспозвоночных животных в большом количестве существовала на протяжении многих миллионов лет до кембрия. Однако из-за того факта, что у этих животных не было твёрдых элементов тела, после гибели они практически полностью исчезали, не оставляя о себе никаких упоминаний. Исключения составляют лишь редкие отпечатки и вкрапления.

В кембрийском периоде у животных появились твёрдые элементы (минерализованные ткани) — скелет, кости, панцирь, раковины и так далее. Минерализованная ткань хорошо сохраняется на протяжении практически неограниченного количества времени, поэтому археологи стали находить останки животных в виде одних лишь скелетов. Отпечатков бескостных организмов и мягких тканей костных животных в кембрии также мало, как и в предыдущие периоды.

Взрыв скелетной фауны или биоты в кембрийском периоде создал совершенно новый мир на планете Земля. Твёрдые элементы предоставили животным абсолютно новые, уникальные возможности. Такие животные стали гораздо крепче, обладали большей выживаемостью, большей возможностью защиты и успешнее охотились. По этой причине, в ближайшие десятки миллионов лет именно организмы с костной системой вытеснили со своей ниши бескостные организмы и стали полноправными хозяевами планеты. При этом можно увидеть необычайно богатую эволюцию кембрия, когда развивающиеся организмы, которые осваивали всё новые и новые ниши, получили множество видов и разновидностей.

Основная жизнь в кембрии была сосредоточена в морях. Наибольшее распространение получили трилобиты. Также в этом периоде обитали «ужасные креветки», одним из ярких представителей которых является охотник на трилобитов Аномалокарис, гастроподы (брюхоногие), брахиоподы (плеченогие), головоногие моллюски, членистоногие, иглокожие и другие.

Животные кембрийского периода:

Marrella splendens

Аномалокарис

Виваксия

Галлюцигения

Опабиния

Трилобит

Хайкоуихтис

Лучшую мебель для вашего дома вы найдёте в «MannGroup». Заходите на сайт manngroup-trade.ru , чтобы ознакомиться с каталогом продукции, стильная итальянская мебель для спальни высокого качества.


5. Возможные причины «взрыва»

Несмотря на то, что довольно сложные трехслойные животные существовали до Кембрия, эволюционное развитие в раннем Кембрии представляется исключительно быстрым. Предпринималось множество попыток объяснить причины подобного «взрывного» развития.

Изменения окружающей среды

Рост концентрации кислорода

Самая ранняя атмосфера Земли вообще не содержала свободного кислорода. Тот кислород, которым дышат современные животные — как содержащийся в воздухе, так и растворенный в воде — является продуктом миллиардов лет фотосинтеза, главным образом — микроорганизмов. Примерно 2,5 миллиарда лет назад концентрация кислорода в атмосфере резко возросла. До этого времени весь вырабатываемый микроорганизмами кислород полностью тратился на окисление элементов с высоким сродством к кислороду, таких как железо. Пока не произошло их полное связывание на суше и в верхних слоях океана, в атмосфере существовали лишь локальные «кислородные оазисы».

Нехватка кислорода могла длительное время препятствовать развитию крупных сложных организмов. Проблема состоит в том, что количество кислорода, которое животное может абсорбировать из окружающей среды, ограничено площадью поверхности. Количество же кислорода, требуемое для жизнедеятельности, определяется массой и объёмом организма, которые по мере увеличения размеров растут быстрее, чем площадь. Рост концентрации кислорода в воздухе и в воде мог ослаблять или вовсе устранять это ограничение.

Нужно отметить, что достаточное количество кислорода для существования крупных вендобионтов присутствовало уже в эдиакарский период. Однако дальнейший рост концентрации кислорода мог предоставить организмам дополнительную энергию для производства веществ, необходимых для развития принципиально более сложных структур тела, в том числе — используемых для хищничества и защиты от него.

Земля-снежок

Существуют многочисленные доказательства того, что в позднем неопротерозое Земля подвергалась глобальному оледенению, в ходе которого большая часть её была покрыта льдом, а температура поверхности была близка к точке замерзания даже на экваторе. Некоторые исследователи указывают, что это обстоятельство может быть тесно связано с кембрийским взрывом, поскольку самые ранние из известных ископаемых относятся к периоду вскоре после конца последнего полного оледенения.

Однако довольно трудно указать причинно-следственную связь таких катастроф с последующим ростом размеров и сложности организмов. Возможно, низкие температуры увеличивали концентрацию кислорода в океане — его растворимость в морской воде растет почти вдвое при падении температуры с 30 °C до 0 °C.

Флуктуации изотопного состава углерода

В отложениях на границе эдиакарского и кембрийского периодов наблюдается очень резкое снижение, а вслед за ним — необычно сильные колебания соотношения изотопов углерода C/C в течение всего раннего кембрия.

Многие ученые предполагали, что исходное падение связано с массовым вымиранием непосредственно перед началом кембрия.. Можно также предположить, что вымирание само стало следствием предшествовавшего распада клатратов метана. Широко известно, что эмиссия метана и последующее насыщение атмосферы диоксидом углерода вызывает глобальный парниковый эффект, сопровождающийся различными экологическими катастрофами. Подобная картина наблюдалась в Триасе, когда жизнь восстанавливалась после массового Пермского вымирания.

Однако довольно трудно объяснить, как массовое вымирание могло вызвать резкий рост таксономического и морфологического разнообразия. Хотя массовые вымирания, такие как пермское и мел-палеогеновое, приводили к последующему росту численности отдельных видов от несущественной до «доминирующей», однако в обоих случаях экологические ниши замещались хотя и другими, но столь же сложными организмами. При этом скачкоообразного роста таксономического или морфологического разнообразия в новой экосистеме не наблюдалось.

Ряд исследователей предполагал, что каждое кратковременное снижение доли C/C в раннем кембрии представляет высвобождение метана которое, благодаря вызванному им небольшому парниковому эффекту и повышению температуры, приводил к росту морфологического разнообразия. Но и эта гипотеза не объясняет резкого увеличения таксономического разнообразия в начале Кембрия.

Объяснения на основе развития организмов

В основе ряда теорий лежит та идея, что относительно малые изменения в способе, которым животные развиваются из эмбриона во взрослый организм, могут привести к резким изменениям формы тела.

Возникновение системы билатерального развития

Регуляторные Hox-гены включают и выключают «рабочие» гены в различных частях тела, и, тем самым, управляют формированием анатомической структуры организма. Очень схожие Hox-гены обнаруживаются в геноме всех животных — от стрекающих до людей. При этом млекопитающие имеют 4 набора Hox-генов, в то время как стрекающие обходятся единственным набором.

Hox-гены у различных групп животных столь схожи, что, к примеру, можно трансплантировать человеческий ген «формирования глаз» в эмбрион дрозофилы, что приведет к формированию глаза — но это будет глаз дрозофилы, благодаря активации соответствующих «рабочих» генов. Отсюда видно, что наличие сходного набора Hox-генов вовсе не означает анатомического сходства организмов. Поэтому возникновение подобной системы могло повлечь резкий рост разнообразия — как морфологического, так и таксономического.

Поскольку одни и те же Hox-гены управляют дифференциацией всех известных билатеральных организмов, эволюционные линии последних должны были разойтись до того, как у них начали образовываться какие-либо специализированные органы. Таким образом, «последний общий предок» всех билатеральных организмов должен был быть небольшим, анатомически простым и, вероятнее всего, подверженным полному разложению без сохранения в окаменелостях. Это обстоятельство делает его обнаружение крайне маловероятным. Однако целый ряд вендобионтов, возможно, имел билатеральное строение тела. Таким образом, подобная система развития могла возникнуть, по меньшей мере, за несколько десятков миллионов лет до Кембрийского взрыва. В этом случае для его объяснения необходимы какие-то дополнительные причины.

Небольшой рост сложности генома может иметь большие последствия

У большинства организмов, имеющих половое размножение, потомок получает примерно по 50 % своих генов от каждого родителя. Это означает, что даже небольшой рост сложности генома способен породить множество вариаций строения и формы тела. Большая часть биологической сложности, вероятно, возникает благодаря действию относительно простых правил на большом числе клеток, функционирующих как клеточные автоматы.

Колея развития

Некоторые ученые предполагают, что по мере усложнения организмов, на эволюционные изменения общего строения тела накладываются вторичные изменения в сторону лучшей специализации его сложившихся частей. Это снижает вероятность прохождения естественного отбора новыми классами организмов — из-за конкуренции с «усовершенствованными» предками. В итоге, по мере складывания общего строения, формируется «колея развития», а пространственная структура тела «замораживается». Соответственно, формирование новых классов происходит «легче» на ранних стадиях эволюции основных клад, а их дальнейшая эволюция идет на более низких таксономических уровнях. Впоследствии автор этой идеи указывал, что такое «замораживание» не является основным объяснением кембрийского взрыва.

Окаменелости, которые могли бы подтвердить эту идею, неоднозначны. Отмечено, что вариации организмов одного класса зачастую наиболее велики на самых первых стадиях развития клады. Например, некоторые кембрийские трилобиты сильно варьировали по количеству грудных сегментов, причём впоследствии подобное разнообразие существенно снизилось. Однако обнаружено, что образцы силурийских трилобитов обладают столь же высокой вариативностью строения, что и раннекембрийские. Исследователи предположили, что общее снижение разнообразия связано с экологическими или функциональными ограничениями. Например, можно ожидать меньшей вариативности числа сегментов после того, как у трилобитов сформировалось выпуклое строение тела, являющееся эффективным способом его защиты.

Экологические объяснения

Такие объяснения сосредоточены на взаимодействии между различными видами организмов. Некоторые из подобных гипотез имеют дело с изменениями пищевых цепей; другие рассматривают гонку вооружений между хищниками и жертвами, которая могла вызвать эволюцию жестких частей тела в раннем Кембрии; ещё какое-то число гипотез сосредоточено на более общих механизмах коэволюции.

«Гонка вооружений» между хищниками и жертвами

Хищничество по определению предполагает гибель жертвы, в силу чего оно становится сильнейшим фактором и ускорителем естественного отбора. Давление на жертвы в направлении лучшей адаптации должно быть более сильным, чем на хищников — поскольку, в отличие от жертвы, они имеют шанс сделать новую попытку.

Однако имеются свидетельства того, что хищничество присутствовало задолго до начала Кембрия. Поэтому маловероятно, что оно само по себе стало причиной Кембрийского взрыва, хотя и имело сильное влияние на анатомические формы возникших при этом организмов.

Появление фитофагов

Стэнли предположил, что появление 700 млн.лет назад простейших, «обгладывающих» микробные маты, крайне расширило пищевые цепи и должно было привести к росту разнообразия организмов. Однако, сегодня известно, что «обгладывание» возникло более 1 млрд лет назад, а угасание строматолитов началось около 1,25 млрд лет назад — задолго до «взрыва».

Рост размеров и разнообразия планктона

Геохимические наблюдения четко показывают, что общая масса планктона стала сравнима с нынешней уже в раннем Протерозое. Однако, до Кембрия планктон не вносил существенного вклада в питание глубоководных организмов, поскольку их тела были слишком малы для быстрого погружения на морское дно. Микроскопический планктон поедался другим планктоном или разрушался химическими процессами в верхних слоях моря задолго до проникновения в глубоководные слои, где мог бы стать пищей для нектона и бентоса.

В составе же ранних кембрийских ископаемых был обнаружен мезозоопланктон, который мог отфильтровывать микроскопический планктон. Новый мезозоопланктон мог служить источником останков, а также выделять экскременты в форме капсул, достаточно крупных для быстрого погружения — они могли быть пищей для нектона и бентоса, вызывая рост их размеров и разнообразия. Если же частицы органики достигали морского дна, в результате последующего захоронения они должны были повышать концентрацию кислорода в воде при одновременном снижении концентрации свободного углерода. Другими словами, появление мезозоопланктона обогатило глубокие участки океана как пищей, так и кислородом, и, тем самым, сделало возможным появление и эволюцию более крупных и разнообразных обитателей морских глубин.

Наконец, возникновение среди мезозоопланктона фитофагов могло сформировать дополнительную экологическую нишу для более крупных мезозоопланктонных хищников, чьи тела, погружаясь в море, вели к дальнейшему его обогащению пищей и кислородом. Возможно, первыми хищниками среди мезозоопланктона были личинки донных животных, чья дальнейшая эволюция стала результатом общего роста хищничества в морях эдиакарского периода.

Множество пустых ниш

Джеймс Валентайн в нескольких работах сделал следующие предположения: резкие изменения в строении тела являются «затруднительными»; изменения имеют гораздо больше шансов на существование, если они встречают слабую конкуренцию за ту экологическую нишу, на которую они нацелены. Последнее необходимо, чтобы новый тип организмов имел достаточно времени для адаптации к своей новой роли.

Это обстоятельство должно приводить к тому, что реализация основных эволюционных изменений гораздо более вероятна на начальных стадиях формирования экосистемы — из-за того, что последующая диверсификация заполняет почти все экологические ниши. В дальнейшем, несмотря на то, что новые типы организмов продолжают возникать, нехватка пустых ниш препятствует их распространению в экосистеме.

Модель Валентайна хорошо объясняет факт уникальности Кембрийского взрыва — почему он случился только один раз и почему его длительность была ограничена.