Во всей красе и элегантности. С ее помощью Ньютон когда-то вывел на основе трех эмпирических законов Кеплера свой закон всемирного тяготения. Предмет, в общем-то, не такой сложный, понять относительно легко. Но вот сдать - сложно, так как нередко преподы бывают до ужаса придирчивыми (как Павлова , например). При решении задач нужно уметь решать диффуры и вычислять интегралы.

Основные идеи

По сути, теормех в рамках этого курса представляет собой применение вариационного принципа для расчёта "движения" разных физических систем. Вариационное исчисление кратко рассматривается в курсе Интегральные уравнения и вариационное исчисление . Уравнения Лагранжа - это уравнения Эйлера, являющиеся решением задачи с закрепленными концами .

Одна задача обычно может решаться сразу 3 разными методами:

  • Метод Лагранжа (функция Лагранжа, уравнения Лагранжа)
  • Метод Гамильтона (функция Гамильтона, уравнения Гамильтона)
  • Метод Гамильтона-Якоби (уравнение Гамильтона-Якоби)

Важно выбрать самый простой из них для конкретной задачи.

Материалы

Первый семестр (зачет)

Основные формулы

Смотреть в большом размере!

Теория

Видеозаписи

Лекций В.Р. Халилова - Attention! записаны не все лекции

Второй семестр (экзамен)

Начать надо с того, что у разных групп экзамен проходит по-разному. Обычно экзаменационный билет состоит из 2-х теор.вопросов и 1-ой задачи. Вопросы обязательны для всех, а вот от задачи можно как избавиться (за прекрасную работу в семестре + написанные контрольные), так и отхватить лишнюю (и не одну). Здесь уже о правилах игры вам расскажут на семинарах. В группах Павловой и Пименова практикуется теормин, который является своеобразным допуском к экзамену. Отсюда следует, что этот теормин надо знать идеально.

Экзамен в группах Павловой проходит примерно так: Для начала билет с 2-мя вопросами термина. На написание есть немного времени, и ключ тут - абсолютно идеально его написать. Тогда Ольга Серафимовна к вам добреет и остальной экзамен проходит очень приятно. Далее билет с 2-мя вопросами по теории + n задач (в зависимости от вашей работы в семестре). Теорию в теории можно списать. Задачи решить. Много задач на экзамене - еще не конец, если вы их прекрасно умеете решать. Это можно превратить в преимущество - за каждый пункт экзамена вы получаете +, +-, -+ или -. Оценка выставляется "по общему впечатлению" => если в теории у вас не все идеально, но потом идет 3 + за задачи, то общее впечатление хорошее. А вот если вы были без задач на экзамене и теория не идеальная, то сгладить это уже нечем.

Теория

  • Юлия. Конспект лекций (2014, pdf) - оба семестра, 2-ой поток
  • Второй поток билеты часть 1 (конспекты лекций и часть для билетов) (pdf)
  • Второй поток билеты и оглавление ко всем этим частям (pdf)
  • Ответы на билеты 1 потока (2016, pdf) - в печатном виде, очень удобно
  • Распознанный теормин к экзамену для групп Пименова (2016, pdf) - оба семестра
  • Ответы на теормин для групп Пименова (2016, pdf) - аккуратные и вроде без ошибок

Задачи

  • Семинары Павловой 2-ой семестр (2015, pdf) - аккуратные, красиво и понятно написанные
  • Задачи, которые могут быть на экзамене (jpg) - когда-то в каком-то лохматом году были на 2-м потоке, также могут быть актуальны для групп В.Р. Халилова (похожие задачи он дает на кр)
  • Задачи к билетам (pdf) - для обоих потоков (на 2-м потоке эти задачи были в группах А.Б. Пименова)

1. Основные понятия теоретической механики.

2. Cтруктура курса теоретической механики.

1. Механика (в широком смысле) - это наука о движении материальных тел в пространстве и времени. Она объединяет ряд дисциплин, объектами исследования которых являются твердые, жидкие и газообразные тела. Теоретическая механика , Теория упругости , Сопротивление материалов, Гидромеханика , Газовая динамика и Аэродинамика - вот далеко не полный перечень различных разделов механики.

Как видно из их названий, они отличаются друг от друга прежде всего объектами исследования. Изучением движения самых простых из них - твердых тел - занимается теоретическая механика. Простота изучаемых в теоретической механике объектов позволяет выявить наиболее общие законы движения, справедливые для всех материальных тел независимо от их конкретных физических свойств. Поэтому теоретическую механику можно рассматривать как основу общей механики.

2. Курс теоретической механики состоит из трех разделов : статики , кинематики и динамики .

В статике рассматривается общее учение о силах и выводятся условия равновесия для твердых тел.

В кинематике излагаются математические способы задания движения тел и выводятся формулы, определяющие основные характеристики этого движения (скорость, ускорение и т.п.).

В динамике по заданному движению определяют силы, вызывающие это движение и, наоборот, по заданным силам определяют как движется тело.

Материальной точкой называют геометрическую точку, обладающая массой.

Cистемой материальных точек называется такая их совокупность, в которой положение и движение каждой точки зависит от положения и движения всех остальных точек данной системы. Часто систему материальных точек называют механической системой . Частным случаем механической системы является абсолютно твердое тело.

Абсолютно твердым называется тело, у которого расстояние между любыми двумя точками всегда остается неизменным (т.е. это абсолютно прочное и недеформируемое тело).

Свободным называют твердое тело, движение которого не ограничено другими телами.

Несвободным называют тело, движение которого, так или иначе, ограничено другими телами. Последние в механике называются связями .

Силой называют меру механического действия одного тела на другое. Поскольку взаимодействие тел определяется не только своей интенсивностью, но и направлением - сила является величиной векторной и на чертежах изображается направленным отрезком (вектором). За единицу силы в системе СИ принят ньютон (Н) . Обозначают силы заглавными буквами латинского алфавита (А, Ы, З, Й...). Численные значения (или модули векторных величин) будем обозначать теми же буквами, но без верхних стрелок (F, S, P, Q ...).


Линией действия силы называется прямая, вдоль которой направлен вектор силы.

Системой сил называется любая конечная совокупность сил, действующих на механическую систему. Принято делить системы сил на плоские (все силы действуют в одной плоскости) и пространственные . Каждая из них, в свою очередь, может быть или произвольной или параллельной (линии действия всех сил параллельны) или системой сходящихся сил (линии действия всех сил пересекаются в одной точке).

Две системы сил называются эквивалентными , если их действия на механическую систему одинаково (т.е. замена одной системы сил на другую не изменяет характера движения механической системы).

Если некоторая система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил. Отметим, что далеко не всякая система сил имеет равнодействующую. Сила, равная равнодействующей по величине, противоположная ей по направлению и действующая вдоль той же прямой, называется уравновешивающей силой.

Система сил, под действием которой свободное твердое тело находится в покое или движется равномерно и прямолинейно, называется уравновешенной или эквивалентной нулю.

Внутренними силами называют силы взаимодействия между материальными точками одной механической системы.

Внешние силы - это силы взаимодействия точек данной механической системы с материальными точками другой системы.

Сила, приложенная к телу в какой-либо одной его точке, называется сосредоточенной .

Силы, действующие на все точки данного объема или данной части поверхности тела, называются распределенными (по объему и по поверхности соответственно).

Приведенный выше перечень основных понятий не является исчерпывающим. Остальные, не менее важные понятия будут вводиться и уточняться в процессе изложения материала курса.

Введение

Теоретическая механика является одной из важнейших фундаментальных общенаучных дисциплин. Она играет существенную роль в подготовке инженеров любых специальностей. На результатах теоретической механики базируются общеинженерные дисциплины: сопротивление материалов, детали машин, теория механизмов и машин и другие.

Основной задачей теоретической механики является изучение движения материальных тел под действием сил. Важной частной задачей представляется изучение равновесия тел под действием сил.

Курс Лекций. Теоретическая механика

    Структура теоретической механики. Основы статики

    Условия равновесия произвольной системы сил.

    Уравнения равновесия твёрдого тела.

    Плоская система сил.

    Частные случаи равновесия твёрдого тела.

    Задача о равновесии бруса.

    Определение внутренних усилий в стержневых конструкциях.

    Основы кинематики точки.

    Естественные координаты.

    Формула Эйлера.

    Распределение ускорений точек твёрдого тела.

    Поступательное и вращательное движения.

    Плоскопараллельное движение.

    Сложное движение точки.

    Основы динамики точки.

    Дифференциальные уравнения движения точки.

    Частные виды силовых полей.

    Основы динамики системы точек.

    Общие теоремы динамики системы точек.

    Динамика вращательного движения тела.

    Добронравов В.В., Никитин Н.Н. Курс теоретической механики. М., Высшая школа, 1983.

    Бутенин Н.В., Лунц Я.Л., Меркин Д.Р. Курс теоретической механики, ч.1 и 2. М., Высшая школа, 1971.

    Петкевич В.В. Теоретическая механика. М., Наука, 1981.

    Сборник заданий для курсовых работ по теоретической механике. Под ред. А.А.Яблонского. М., Высшая школа, 1985.

Лекция 1. Структура теоретической механики. Основы статики

В теоретической механике изучается движение тел относительно других тел, представляющие собой физические системы отсчёта.

Механика позволяет не только описывать, но и предсказывать движение тел, устанавливая причинные связи в определённом, весьма широком, круге явлений.

Основные абстрактные модели реальных тел:

    материальная точка – имеет массу, но не имеет размеров;

    абсолютно твёрдое тело – объём конечных размеров, сплошь заполненный веществом, причём расстояния между любыми двумя точками среды, заполняющей объём, не изменяются во время движения;

    сплошная деформируемая среда – заполняет конечный объём или неограниченное пространство; расстояния между точками такой среды могут меняться.

Из них – системы:

Система свободных материальных точек;

Системы со связями;

Абсолютно твёрдое тело с полостью, заполненной жидкостью, и т.п.

«Вырожденные» модели:

Бесконечно тонкие стержни;

Бесконечно тонкие пластины;

Невесомые стержни и нити, связывающие между собой материальные точки, и т.д.

Из опыта: механические явления протекают неодинаково в разных местах физической системы отсчёта. Это свойство – неоднородность пространства, определяемого физической системой отсчёта. Под неоднородностью здесь понимается зависимость характера протекания явления от места, в котором мы наблюдаем это явление.

Ещё свойство – анизотропность (неизотропность) движение тела относительно физической системы отсчёта может быть различным в зависимости от направления. Примеры: течение реки по меридиану (с севера на юг - Волга); полёт снаряда, маятник Фуко.

Свойства системы отсчёта (неоднородность и анизотропность) затрудняют наблюдение за движением тела.

Практически свободна от этого – геоцентрическая система: центр системы в центре Земли и системы не вращается относительно «неподвижных» звёзд). Геоцентрическая система удобна для расчётов движений на Земле.

Для небесной механики (для тел солнечной системы): гелиоцентрическая система отсчёта, которая движется с центром масс Солнечной системы и не вращается относительно «неподвижных» звёзд. Для этой системы пока не обнаружены неоднородность и анизотропность пространства

по отношению к явлениям механики.

Итак, вводится абстрактная инерциальная система отсчёта, для которой пространство однородно и изотропно по отношению к явлениям механики.

Инерциальная система отсчёта – такая, собственное движение которой не может быть обнаружено никаким механическим опытом. Мысленный эксперимент: «точка, одинокая во всём мире» (изолированная) либо покоится, либо движется прямолинейно и равномерно.

Все системы отсчёта движущиеся относительно исходной прямолинейно, равномерно будут инерциальными. Это позволяет ввести единую декартовую систему координат. Такое пространство называется евклидовым .

Условное соглашение – берут правую систему координат (рис. 1).

Время – в классической (нерелятивистской) механике абсолютно , единое для всех систем отсчёта то есть начальный момент – произволен. В отличие релятивистской механики, где применяется принцип относительности.

Состояние движения системы в момент времени t определяется координатами и скоростями точек в этот момент.

Реальные тела взаимодействуют при этом возникают силы, которые меняют состояние движения системы. Это и есть суть теоретической механики.

Как изучается теоретическая механика?

    Учение о равновесии совокупности тел некоторой системы отсчёта – раздел статика.

    Раздел кинематика : часть механики, в которой изучаются зависимости между величинами, характеризующими состояние движения систем, но не рассматриваются причины, вызывающие изменение состояния движения.

После этого рассмотрим влияние сил [ОСНОВНАЯ ЧАСТЬ].

    Раздел динамика : часть механики, в которой рассматривается влияние сил на состояние движения систем материальных объектов.

Принципы построения основного курса – динамики:

1) в основе – система аксиом (на основе опыта, наблюдений);

Постоянно – безжалостный контроль практики.Признак точной науки – наличие внутренней логики (без неё - набор не связанных рецептов) !

Статикой называется та часть механики, где изучаются условия, которым должны удовлетворять силы, действующие на систему материальных точек, для того чтобы система находилась в равновесии, и условия эквивалентности систем сил.

Будут рассмотрены задачи о равновесии в элементарной статике с применением исключительно геометрических методов, основанных на свойствах векторов. Такой подход применяется в геометрической статике (в отличие от аналитической статики, которая здесь не рассматривается).

Положения различных материальных тел будем относить к системе координат, которую примем за неподвижную.

Идеальные модели материальных тел:

1) материальная точка – геометрическая точка с массой.

2) абсолютно твёрдое тело – совокупность материальных точек, расстояния между которыми не могут быть изменены никакими действиями.

Силами будем называть объективные причины, являющиеся результатом взаимодействия материальных объектов, способные вызвать движение тел из состояния покоя или изменить существующее движение последних.

Так как сила определяется вызываемым ею движением, то она также имеет относительный характер, зависящий от выбора системы отсчёта.

Вопрос о природе сил рассматривается в физике .

Система материальных точек находится в равновесии, если, будучи в покое, она не получает никакого движения от сил, на неё действующих.

Из повседневного опыта: силы имеют векторный характер, то есть величину, направление, линию действия, точку приложения. Условие равновесия сил, действующих на твёрдое тело, сводится к свойствам систем векторов.

Обобщая опыт изучения физических законов природы, Галилей и Ньютон сформулировали основные законы механики, которые могут рассматриваться как аксиомы механики, так как имеют в своей основе экспериментальные факты.

Аксиома 1. Действие на точку твёрдого тела нескольких сил равносильно действию одной равнодействующей силы, строящейся по правилу сложения векторов (рис.2).

Следствие. Силы, приложенные к точке твёрдого тела, складываются по правилу параллелограмма.

Аксиома 2. Две силы, приложенные к твёрдому телу, взаимно уравновешиваются тогда и только тогда, когда они равны по величине, направлены в противоположные стороны и лежат на одной прямой.

Аксиома 3. Действие на твёрдое тело системы сил не изменится, если добавить к этой системе или отбросить от неё две силы, равные по величине, направленные в противоположные стороны и лежащие на одной прямой.

Следствие. Силу, действующую на точку твёрдого тела, можно переносить вдоль линии действия силы без изменения равновесия (то есть, сила является скользящим вектором, рис.3)

1) Активные – создают или способны создать движение твёрдого тела. Например, сила веса.

2) Пассивные – не создающие движения, но ограничивающие перемещения твёрдого тела, препятствующие перемещениям. Например, сила натяжения нерастяжимой нити (рис.4).

Аксиома 4. Действие одного тела на второе равно и противоположно действию этого второго тела на первое (действие равно противодействию ).

Геометрические условия, ограничивающие перемещение точек, будем называть связями.

Условия связи: например,

- стержень непрямой длины l.

- гибкая нерастяжимая нить длиной l.

Силы, обусловленные связями и препятствующие перемещениям, называются силами реакций.

Аксиома 5. Связи, наложенные на систему материальных точек, можно заменить силами реакций, действие которых эквивалентно действию связей.

Когда пассивные силы не могут уравновесить действие активных сил, начинается движение.

Две частные задачи статики

1. Система сходящихся сил, действующих на твёрдое тело

Системой сходящихся сил называется такая система сил, линии действия которой пересекаются в одной точке, которую всегда можно принять за начало координат (рис.5).

Проекции равнодействующей:

;

;

.

Если , то сила вызывает движение твёрдого тела.

Условие равновесия для сходящейся системы сил:

2. Равновесие трёх сил

Если на твёрдое тело действуют три силы, и линии действия двух сил пересекаются в некоторой точке А, равновесие возможно тогда и только тогда, когда линия действия третьей силы тоже проходит через точку А, а сама сила равна по величине и противоположно направлена сумме(рис.6).

Примеры:

Момент силы относительно точки О определим как вектор ,по величине равный удвоенной площади треугольника, основанием которого является вектор силы с вершиной в заданной точке О; направление – ортогонально плоскости рассмотренного треугольника в ту сторону, откуда вращение, производимое силой вокруг точки О, виднопротив хода часовой стрелки. является моментом скользящего вектора и являетсясвободным вектором (рис.9).

Итак: или

,

где ;;.

Где F – модуль силы, h – плечо (расстояние от точки до направления силы).

Моментом силы относительно оси называется алгебраическое значение проекции на эту ось вектора момента силы относительно произвольной точки О, взятой на оси (рис.10).

Это скаляр, не зависящий от выбора точки. Действительно, разложим :|| и в плоскости.

О моментах: пусть О 1 – точка пересечения с плоскостью. Тогда:

а) от - момент => проекция = 0.

б) от - момент вдоль => является проекцией.

Итак, момент относительно оси – это момент составляющей силы в перпендикулярной плоскости к оси относительно точки пересечения плоскости и оси.

Теорема Вариньона для системы сходящихся сил:

Момент равнодействующей силы для системы сходящихся сил относительно произвольной точки А равен сумме моментов всех составляющих сил относительно той же точки А (рис.11).

Доказательство в теории сходящихся векторов.

Пояснение: сложение сил по правилу параллелограмма => результирующая сила даёт суммарный момент.

Контрольные вопросы:

1. Назовите основные модели реальных тел в теоретической механике.

2. Сформулируйте аксиомы статики.

3. Что называется моментом силы относительно точки?

Лекция 2. Условия равновесия произвольной системы сил

Из основных аксиом статики следуют элементарные операции над силами:

1) силу можно переносить вдоль линии действия;

2) силы, линии действия которых пересекаются, можно складывать по правилу параллелограмма (по правилу сложения векторов);

3) к системе сил, действующих на твёрдое тело, можно всегда добавить две силы, равные по величине, лежащие на одной прямой и направленные в противоположные стороны.

Элементарные операции не изменяют механического состояния системы.

Назовём две системы сил эквивалентными, если одна из другой может быть получена с помощью элементарных операций (как в теории скользящих векторов).

Система двух параллельных сил, равных по величине и направленных в противоположные стороны, называется парой сил (рис.12).

Момент пары сил - вектор, по величине равный площади параллелограмма, построенного на векторах пары, и направленный ортогонально к плоскости пары в ту сторону, откуда вращение, сообщаемое векторами пары, видно происходящим против хода часовой стрелки.

, то есть момент силы относительно точки В.

Пара сил полностью характеризуется своим моментом.

Пару сил можно переносить элементарными операциями в любую плоскость, параллельную плоскости пары; изменять величины сил пары обратно пропорционально плечам пары.

Пары сил можно складывать, при этом моменты пар сил складываются по правилу сложения (свободных) векторов.

Приведение системы сил, действующих на твёрдое тело, к произвольной точке (центру приведения) - означает замену действующей системы более простой: системой трёх сил, одна из которых проходит через наперёд заданную точку, а две другие представляют пару.

Доказывается с помощью элементарных операций (рис.13).

Система сходящихся сил и система пар сил.

- результирующая сила .

Результирующая пара .

Что и требовалось показать.

Две системы сил будут эквивалентны тогда и только тогда, когда обе системы приводятся к одной результирующей силе и одной результирующей паре, то есть при выполнении условий:

Общий случай равновесия системы сил, действующих на твёрдое тело

Приведём систему сил к (рис.14):

Результирующая сила через начало координат;

Результирующая пара, причём, через точку О.

То есть привели к и- две силы, одна из которыхпроходит через заданную точку О.

Равновесие, если ина одной прямой, равны, направлены противоположно (аксиома 2).

Тогда проходит через точку О, то есть.

Итак , общие условия равновесия твёрдого тела:

Эти условия справедливы для произвольной точки пространства.

Контрольные вопросы:

1. Перечислите элементарные операции над силами.

2. Какие системы сил называются эквивалентными?

3. Напишите общие условия равновесия твёрдого тела.

Лекция 3. Уравнения равновесия твёрдого тела

Пусть О – начало координат; – результирующая сила;– момент результирующей пары. Пусть точка О1 – новый центр приведения (рис.15).

Новая система сил:

При изменении точки приведения => меняется только (в одну сторону с одним знаком, в другую – с другим). То естьточка:совпадают линиии

Аналитически: (колинеарность векторов)

; координаты точки О1.

Это уравнение прямой линии, для всех точек которой направление результирующего вектора совпадает с направлением момента результирующей пары – прямая называется динамой.

Если на оси динамы => , то система эквивалентна одной результирующей силе, которую называютравнодействующей силой системы. При этом всегда , то есть.

Четыре случая приведения сил:

1.) ;- динама.

2.) ;- равнодействующая.

3.) ;- пара.

4.) ;- равновесие.

Два векторных уравнения равновесия: главный вектор и главный момент равны нулю ,.

Или шесть скалярных уравнений в проекциях на декартовые оси координат:

Здесь:

Сложность вида уравнений зависит от выбора точки приведения => искусство расчётчика.

Нахождение условий равновесия системы твёрдых тел, находящихся во взаимодействии <=> задача о равновесии каждого тела в отдельности, причём на тело действуют внешние силы и силы внутренние (взаимодействие тел в точках соприкосновения с равными и противоположно направленными силами – аксиома IV, рис.17).

Выберем для всех тел системы один центр приведения. Тогда для каждого тела с номером условия равновесия:

, , (= 1, 2, …, k)

где ,- результирующая сила и момент результирующей пары всех сил, кроме внутренних реакций.

Результирующая сила и момент результирующей пары сил внутренних реакций.

Формально суммируя по и учитывая по IV аксиоме

получаем необходимые условия равновесия твёрдого тела:

,

Пример.

Равновесие: = ?

Контрольные вопросы:

1. Назовите все случаи приведения системы сил к одной точке.

2. Что такое динама?

3. Сформулируйте необходимые условия равновесия системы твёрдых тел.

Лекция 4. Плоская система сил

Частный случай общей поставки задачи.

Пусть все действующие силы лежат в одной плоскости – например, листа. Выберем за центр приведения точку О – в этой же плоскости. Получим результирующую силу и результирующую парув этой же плоскости, то есть(рис.19)

Замечание.

Систему можно привести к одной результирующей силе.

Условия равновесия:

или скалярные:

Очень часто встречаются в приложениях, например, в сопротивлении материалов.

Пример.

С трением шара о доску и о плоскость. Условие равновесия: = ?

Задача о равновесии несвободного твёрдого тела.

Несвободным называется такое твёрдое тело, перемещение которого стеснено связями. Например, другими телами, шарнирными закреплениями.

При определении условий равновесия: несвободное тело можно рассматривать как свободное, заменяя связи неизвестными силами реакции.

Пример.

Контрольные вопросы:

1. Что называется плоской системой сил?

2. Напишите условия равновесия плоской системы сил.

3. Какое твёрдое тело называется несвободным?

Лекция 5. Частные случаи равновесия твёрдого тела

Теорема. Три силы уравновешивают твёрдое тело только в том случае, когда все они лежат в одной плоскости.

Доказательство.

Выберем за точку приведения точку на линии действия третьей силы. Тогда (рис.22)

То есть плоскости S1 иS2 совпадают, причём для любой точки на оси силы, ч.т.д. (Проще:в плоскоститолько там же для уравновешивания).

Статика - это раздел теоретической механики, в котором изучаются условия равновесия материальных тел, находящихся под действием сил.

Под состоянием равновесия, в статике, понимается состояние, при котором все части механической системы покоятся (относительно неподвижной системы координат). Хотя методы статики применимы и к движущимся телам, и с их помощью можно изучать задачи динамики, но базовыми объектами изучения статики являются неподвижные механические тела и системы.

Сила - это мера воздействия одного тела на другое. Сила - это вектор, имеющий точку приложения на поверхности тела. Под действием силы, свободное тело получает ускорение, пропорциональное вектору силы и обратно пропорциональное массе тела.

Закон равенства действия и противодействия

Сила, с которой первое тело действует на второе, равна по абсолютной величине и противоположна по направлению силе, с которой второе тело действует на первое.

Принцип отвердевания

Если деформируемое тело находится в равновесии, то его равновесие не нарушится, если тело считать абсолютно твердым.

Статика материальной точки

Рассмотрим материальную точку, которая находится в равновесии. И пусть на нее действуют n сил , k = 1, 2, ..., n .

Если материальная точка находится в равновесии, то векторная сумма действующих на нее сил равна нулю:
(1) .

В равновесии геометрическая сумма сил, действующих на точку, равна нулю.

Геометрическая интерпретация . Если в конец первого вектора поместить начало второго вектора , а в конец второго вектора поместить начало третьего , и далее продолжать этот процесс, то конец последнего, n -го вектора окажется совмещенным с началом первого вектора. То есть мы получим замкнутую геометрическую фигуру, длины сторон которой равны модулям векторов . Если все векторы лежат в одной плоскости, то мы получим замкнутый многоугольник.

Часто бывает удобным выбрать прямоугольную систему координат Oxyz . Тогда суммы проекций всех векторов сил на оси координат равны нулю:

Если выбрать любое направление, задаваемое некоторым вектором , то сумма проекций векторов сил на это направление равна нулю:
.
Умножим уравнение (1) скалярно на вектор :
.
Здесь - скалярное произведение векторов и .
Заметим, что проекция вектора на направление вектора определяется по формуле:
.

Статика твердого тела

Момент силы относительно точки

Определение момента силы

Моментом силы , приложенной к телу в точке A , относительно неподвижного центра O , называется вектор , равный векторному произведению векторов и :
(2) .

Геометрическая интерпретация

Момент силы равен произведению силы F на плечо OH.

Пусть векторы и расположены в плоскости рисунка. Согласно свойству векторного произведения, вектор перпендикулярен векторам и , то есть перпендикулярен плоскости рисунка. Его направление определяется правилом правого винта. На рисунке вектор момента направлен на нас. Абсолютное значение момента:
.
Поскольку , то
(3) .

Используя геометрию, можно дать другую интерпретацию момента силы. Для этого проведем прямую AH через вектор силы . Из цента O опустим перпендикуляр OH на эту прямую. Длину этого перпендикуляра называют плечом силы . Тогда
(4) .
Поскольку , то формулы (3) и (4) эквивалентны.

Таким образом, абсолютное значение момента силы относительно центра O равно произведению силы на плечо этой силы относительно выбранного центра O .

При вычислении момента часто бывает удобным разложить силу на две составляющие:
,
где . Сила проходит через точку O . Поэтому ее момент равен нулю. Тогда
.
Абсолютное значение момента:
.

Компоненты момента в прямоугольной системе координат

Если выбрать прямоугольную систему координат Oxyz с центром в точке O , то момент силы будет иметь следующие компоненты:
(5.1) ;
(5.2) ;
(5.3) .
Здесь - координаты точки A в выбранной системе координат:
.
Компоненты представляют собой значения момента силы относительно осей , соответственно.

Свойства момента силы относительно центра

Момент относительно центра O , от силы, проходящей через этот центр, равен нулю.

Если точку приложения силы переместить вдоль линии, проходящей через вектор силы, то момент, при таком перемещении, не изменится.

Момент от векторной суммы сил, приложенных к одной точке тела, равен векторной сумме моментов от каждой из сил, приложенных к этой же точке:
.

Тоже самое относится и к силам, чьи линии продолжения пересекаются в одной точке. В этом случае, за точку приложения сил следует брать их точку пересечения.

Если векторная сумма сил равна нулю:
,
то сумма моментов от этих сил не зависит от положения центра, относительно которого вычисляются моменты:
.

Пара сил

Пара сил - это две силы, равные по абсолютной величине и имеющие противоположные направления, приложенные к разным точкам тела.

Пара сил характеризуется моментом , который они создают. Поскольку векторная сумма сил, входящих в пару равна нулю, то создаваемый парой момент не зависит от точки, относительно которой вычисляется момент. С точки зрения статического равновесия, природа сил, входящих в пару, не имеет значения. Пару сил используют для того, чтобы указать, что на тело действует момент сил, имеющий определенное значение .

Момент силы относительно заданной оси

Часто встречаются случаи, когда нам не нужно знать все компоненты момента силы относительно выбранной точки, а нужно знать только момент силы относительно выбранной оси.

Моментом силы относительно оси, проходящей через точку O - это проекция вектора момента силы, относительно точки O , на направление оси.

Свойства момента силы относительно оси

Момент относительно оси от силы, проходящей через эту ось равен нулю.

Момент относительно оси от силы, параллельной этой оси равен нулю.

Вычисление момента силы относительно оси

Пусть на тело, в точке A действует сила . Найдем момент этой силы относительно оси O′O′′ .

Построим прямоугольную систему координат. Пусть ось Oz совпадает с O′O′′ . Из точки A опустим перпендикуляр OH на O′O′′ . Через точки O и A проводим ось Ox . Перпендикулярно Ox и Oz проводим ось Oy . Разложим силу на составляющие вдоль осей системы координат:
.
Сила пересекает ось O′O′′ . Поэтому ее момент равен нулю. Сила параллельна оси O′O′′ . Поэтому ее момент также равен нулю. По формуле (5.3) находим:
.

Заметим, что компонента направлена по касательной к окружности, центром которой является точка O . Направление вектора определяется правилом правого винта.

Условия равновесия твердого тела

В равновесии векторная сумма всех действующих на тело сил равна нулю и векторная сумма моментов этих сил относительно произвольного неподвижного центра равна нулю:
(6.1) ;
(6.2) .

Подчеркнем, что центр O , относительно которого вычисляются моменты сил можно выбирать произвольным образом. Точка O может, как принадлежать телу, так и находится за его пределами. Обычно центр O выбирают так, чтобы сделать вычисления более простыми.

Условия равновесия можно сформулировать и другим способом.

В равновесии сумма проекций сил на любое направление, задаваемое произвольным вектором , равна нулю:
.
Также равна нулю сумма моментов сил относительно произвольной оси O′O′′ :
.

Иногда такие условия оказываются более удобными. Бывают случаи, когда за счет выбора осей, можно сделать вычисления более простыми.

Центр тяжести тела

Рассмотрим одну из важнейших сил - силу тяжести. Здесь силы не приложены в определенных точках тела, а непрерывно распределены по его объему. На каждый участок тела с бесконечно малым объемом Δ V , действует сила тяготения . Здесь ρ - плотность вещества тела, - ускорение свободного падения.

Пусть - масса бесконечно малого участка тела. И пусть точка A k определяет положение этого участка. Найдем величины, относящиеся к силе тяжести, которые входят в уравнения равновесия (6).

Найдем сумму сил тяжести, образованную всеми участками тела:
,
где - масса тела. Таким образом, сумму сил тяжести отдельных бесконечно малых участков тела можно заменить одним вектором силы тяжести всего тела:
.

Найдем сумму моментов сил тяжести, относительно произвольным способом выбранного центра O :

.
Здесь мы ввели точку C , которая называется центром тяжести тела. Положение центра тяжести, в системе координат с центром в точке O , определяется по формуле:
(7) .

Итак, при определении статического равновесия, сумму сил тяжести отдельных участков тела можно заменить равнодействующей
,
приложенной к центру масс тела C , положение которого определяется формулой (7).

Положение центра тяжести для различных геометрических фигур можно найти в соответствующих справочниках. Если тело имеет ось или плоскость симметрии, то центр тяжести расположен на этой оси или плоскости. Так, центры тяжести сферы, окружности или круга находятся в центрах окружностей этих фигур. Центры тяжести прямоугольного параллелепипеда, прямоугольника или квадрата также расположены в их центрах - в точках пересечения диагоналей.

Равномерно (А) и линейно (Б) распределенная нагрузка.

Также встречаются подобные силе тяжести случаи, когда силы не приложены в определенных точках тела, а непрерывно распределены по его поверхности или объему. Такие силы называют распределенными силами или .

(рисунок А). Также, как и в случае с силой тяжести, ее можно заменить равнодействующей силой величины , приложенной в центре тяжести эпюры. Поскольку на рисунке А эпюра представляет собой прямоугольник, то центр тяжести эпюры находится в ее центре - точке C : | AC| = | CB| .

(рисунок В). Ее также можно заменить равнодействующей. Величина равнодействующей равна площади эпюры:
.
Точка приложения находится в центре тяжести эпюры. Центр тяжести треугольника, высотой h , находится на расстоянии от основания. Поэтому .

Силы трения

Трение скольжения . Пусть тело находится на плоской поверхности. И пусть - сила, перпендикулярная поверхности, с которой поверхность действует на тело (сила давления). Тогда сила трения скольжения параллельна поверхности и направлена в сторону, препятствуя движению тела. Ее наибольшая величина равна:
,
где f - коэффициент трения. Коэффициент трения является безразмерной величиной.

Трение качения . Пусть тело округлой формы катится или может катиться по поверхности. И пусть - сила давления, перпендикулярная поверхности, с которой поверхность действует на тело. Тогда на тело, в точке соприкосновения с поверхностью, действует момент сил трения, препятствующий движению тела. Наибольшая величина момента трения равна:
,
где δ - коэффициент трения качения. Он имеет размерность длины.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

В. И. Дронт, В. В. Дубинин, М. М. Ильин и др.; Под общ. ред. К. С. Колесникова «Курс теоретической механики: Учебник для вузов» Изд-во МГТУ им. Н. Э. Баумана, 2005 год, 736 стр. (7,17 мб. djvu)

В учебнике представлены такие разделы, как: кинематика, статика, динамика точки, твердого тела и механической системы. А также аналитическая механика, теория колебаний, теория удара, введение в динамику тел переменной массы, основы небесной механики. Все разделы сопровождаются примерами решения задач. Курс учебного пособия представлен по курсу лекций и в соответствии с программой, прочитанной авторами в МГТУ им. Н. Э. Баумана.

Книга может использоваться как учебное пособие для студентов машиностроительных вузов и технических университетов. Поможет аспирантам и преподавателям в подготовке и проведению лекций и занятий. А также специалистам работающим в области прикладной статики и динамики механических систем, машино- и приборостроения.
ISBN 5-7038-1695-5 (Т. 1)
ISBN 5-7038-1371-9

Предисловие.

Учебник является результатом многолетней преподавательской деятельности авторов в МГТУ им. Н. Э. Баумана, выпускающем инженеров-конструкторов и исследователей, которые специализируются в области машино- и приборостроения. Ему предшествовали учебники, написанные также преподавателями университета В. В. Добронравовым, А. Л. Дворниковым, К Н. Никитиным, которые переиздавались несколько раз и сыграли большую роль в обучении студентов.

Переход к университетскому инженерному образованию потребовал расширения содержания курса, более полной физической трактовки ряда вопросов и естественного усложнения используемого математического аппарата. С этой целью в разделе «Кинематика» более полно изложена глава «Общий случай движения твердого тела».

Статика излагается как самостоятельный раздел, поскольку такие предметы, как сопротивление материалов, теория механизмов и механика машин, детали машин, предметы инженерного проектирования, требуют от студента четкого представления о способах преобразования и передачи силовых взаимодействий в механизмах машины.

Значительные дополнения сделаны в разделе «Динамика». Здесь введены интегральные вариационные принципы, элементы небесной механики; более полно изложены теория колебаний, теория удара и некоторые другие вопросы.

Некоторые сведения из теории векторов 9
В. 1. Скалярные и векторные величины. Единичные векторы 9
В.2. Проекции вектора на ось и плоскость 11
В.З. Координаты вектора. Аналитическое задание вектора. Радиус вектор точки 12
В.4. Сложение и вычитание векторов 14
В.5. Умножение векторов 16
В.6. Векторы и матрицы 24
В.7. Связь между проекциями вектора на оси двух прямоугольных систем координат 29
В.8. Вектор-функция. Годограф вектора. Дифференцирование вектора по скалярному аргументу 32

Раздел 1. КИНЕМАТИКА

Глава I. Кинематика точки 39
1.1. Скорость точки 39
1.2. Ускорение точки 41
1.3. Векторный способ задания движения точки 44
1.4. Координатный способ задания движения точки 44
1.5. Естественный способ задания движения точки 61

Глава 2. Простейшие движения твердого тела 70
2.1. Степени свободы и теорема о проекциях скоростей 70
2.2. Поступательное движение твердого тела 73
2.3. Вращение твердого тела вокруг неподвижной оси 73

Глава 3. Плоское движение твердого тела 85
3.1. Разложение плоского движения твердого тела на поступательное и вращательное движения 85
3.2. Уравнения движения, угловая скорость и угловое ускорение твердого тела при плоском движении 87
3.3. Скорости точек тела при плоском движении 89
3.4. Мгновенный центр скоростей 90
3.5. Мгновенный центр вращения. Центроиды 94
3.6. Вычисление угловой скорости твердого тела при плоском движении
3.7. Ускорения точек тела при плоском движении 98
3.8. Мгновенный центр ускорений 102
3.9. Способы вычисления углового ускорения тела при плоском движении 106

Глава 4. Вращение твердого тела вокруг неподвижной точки 110
4.1. Число степеней свободы. Углы Эйлера. Уравнения вращения 110
4.2. Матрица направляющих косинусов. Траектория точки тела 114
4.3. Мгновенная ось вращения. Аксоиды 116
4.4. Мгновенные угловая скорость и угловое ускорение 119
4.5. Скорости точек тела. Кинематические уравнения Эйлера 122
4.6. Ускорения точек тела 128
4.7. углового ускорения тела 130

Глава 5. Общий случай движения твердого тела 134
5.1. Число степеней свободы. Обобщенные координаты. Уравнения движения 134
5.2. Траектория произвольной точки тела 139
5.3. Скорость произвольной точки тела 140
5.4. Ускорение произвольной точки тела 141

Глава 6. Сложное движение точки 143
6.1. Относительное, переносное и абсолютное движения точки 143
6.2. Абсолютная и относительная производные вектора. Формула Бура 145
6.3. Теорема о сложении скоростей 148
6.4. Теорема о сложении ускорений, или кинематическая теорема Кориолиса. Ускорение Кориолиса 150
6.5. Сложение ускорений в частных случаях переносного движения 153

Глава 7. Сложное движение твердого тела 162
7.1. Теорема о сложении угловых скоростей при сложном движении твердого тела 162
7.2. Сложение вращений вокруг пересекающихся осей 164
7.3. Сложение вращений вокруг параллельных осей. Паравращений 165
7.4. Сложение поступательных движений 168
7.5. Сложение поступательного и вращательного движений 169

Раздел 2. СТАТИКА

Глава 8. Аксиомы и основные положения статики 173
8.1. Аксиомы статики 174
8.2. Основные виды связей и их реакции 177
83. Система сходящихся сил 181
8.4. Момент силы относительно точки и относительно оси 189
8.5. Сложение параллельных сил. Пара сил 196
8.6. Приведение системы сил к простейшей системе 204

Глава 9. Равновесие тел 214
9.1. Условия равновесия системы сил 214
9.2. Равновесие системы тел 222
9.3. Определение внутренних сил 225
9.4. Статически определимые и статически неопределимые системы тел 227
9.5. Расчет плоских ферм 228
9.6. Распределенные силы 229

Глава 10. Трение 236
10.1. Законы трения скольжения 236
10.2. Реакции шероховатой поверхности. Угол трения 237
10.3. Реакция связи при качении 238
10.4. Равновесие тела при наличии трения. Конус трения 239

Глава 11. Центр тяжести 248
11.1. Центр системы параллельных сил 248
11.2. Центр тяжести твердого тела 251
11.3. Методы определения координат центров тяжести тел 253

Глава 12. Равновесие гибкой и нерастяжимой нити 260
12.1. Дифференциальные уравнения равновесия нити 260
12.2. Частные случаи внешних сил 263
12.3. Цепная линия 265

Раздел 3. ДИНАМИКА

Глава 13. Динамика материальной точки 271
13.1. Аксиомы динамики 271
13.2. Дифференциальные уравнения движения материальной точки 273
13.3. Две основные задачи динамики материальной точки 275
13.4. Движение несвободной материальной точки 280
13.5. Динамика относительного движения 288
13.6. Равновесие и движение материальной точки относительно Земли 293

Глава 14. Геометрия масс 298
14.1. Центр масс механической системы 298
14.2. Моменты инерции 301
14.3. Зависимость моментов инерции относительно параллельных осей (теорема Гюйгенса-Штейнера) 304
14.4. Моменты инерции однородных тел 305
14.5. Моменты инерции однородных тел вращения 310
14.6. Момент инерции относительно оси, проходящей через заданную точку 315
14.7. Эллипсоид инерции. Главные оси инерции 318
14.8. Свойства главных осей инерции тела 321
14.9. Определение направления главных осей инерции 326

Глава 13. Общие теоремы динамики 331
13.1. Механическая система. Внешние и внутренние силы 331
15.2. Дифференциальные уравнения движения механической системы 334
15.3. Теорема о движении центра масс механической системы 335
15.4. Теорема об изменении количества движения 342
15.5. Теорема об изменении момента количества движения материальной точки. Теорема об изменении главного момента количеств движения механической системы 353
15.6. Теорема об изменении кинетической энергии 382
15.7. Потенциальное силовое поле 400
15.8. Примеры использования общих теорем динамики 412

Глава 16. Динамика твердого тела 424
16.1. Поступательное движение твердого тела. Вращение твердого тела вокруг неподвижной оси. Плоское движение твердого тела 424
16.2. Сферическое движение твердого тела 436
16.3. Общий случай движения твердого тела 465

Глава 17. Принцип Даламбера. Динамические реакции связей 469
17.1. Принцип Даламбера. Сила инерции 469
17.2. Принцип Даламбера для механической системы 471
17.3. Главный вектор и главный момент сил инерции 473
17.4. Динамические реакции опор 475
17.5. Статическая и динамическая уравновешенность твердого тела, вращающегося вокруг неподвижной оси 482
17.6. Балансировка роторов 487

Глава 18. Основы аналитической механики 493
18.1. Основные понятия 493
18.2. Возможная работа силы. Идеальные связи 504
18.3. Обобщенные силы 507
18.4. Дифференциальные принципы аналитической механики 513
18.5. Уравнение Лагранжа второго рода 527
18.6. Интегральные вариационные принципы механики 536

Глава 19. Теория колебаний 555
19.1. Устойчивость положения равновесия механической системы 555
19.2. Дифференциальные уравнения малых колебаний линейной системы с одной степенью свободы 559
19.3. Свободные движения линейной системы с одной степенью свободы 568
19.4. Вынужденные колебания линейной системы с одной степенью свободы 582
19.5. Основы теории регистрирующих приборов 607
19.6. Основы виброзащиты 612
19.7. Дифференциальные уравнения малых колебаний линейной системы с конечным числом степеней свободы 615
19.8. Свободные колебания линейной консервативной системы с двумя степенями свободы 625
19.9. Вынужденные колебания линейной системы с двумя степенями свободы при гармоническом возбуждении.
Динамический гаситель колебаний 637
19.10. Колебания линейных систем с конечным числом степеней свободы 645

Глава 20. Теория удара 653
20.1. Основные понятия и допущения. Модель удара 653
20.2. Теоремы об изменении количества движения и о движении центра масс системы при ударе 658
20.3. Теорема об изменении главного момента количеств движения системы при ударе 660
20.4. Коэффициент восстановления 662
20.5. Теорема об изменении кинетической энергии системы при ударе. Теорема Карно 664
20.6. Удар по тепу, вращающемуся вокруг неподвижной оси. Центр удара 672
20.7. Удар по твердому телу с неподвижной точкой. Центр удара. Удар по свободному твердому телу 677
20.8.0 связях при ударе. Общее уравнение механики 679
20.9 Уравнение Лагранжа второго рода при ударе в механической системе 682
20.10. Удар двух тел при поступательном движении. Энергетические соотношения 684
20.11. Удар материальной точки о неподвижную шероховатую поверхность 691
20.12. Удар двух шаров. Модель Герца 699

Глава 21. Введение в динамику тел переменной массы 705
21.1. Основные понятия и допущения 705
21.2. Обобщенное уравнение Мещерского, реактивные силы 707
21.3. Частные случаи уравнения Мещерского 709
21.4. Некоторые классические задачи динамики точки переменной массы 712

Глава 22. Основы небесной механики 717
22.1. Формулы Бине 717.
22.2. Закон всемирного тяготения. Законы Кеплера 720
22.3. Энергетическая классификация орбит 723
22.4. Движение точки по орбите 725
22.5. Задача двух тел 727
22.6.0 задаче п тел и о других задачах небесной механики 729

Скачать книгу бесплатно 7,17 мб. djvu