Системой m линейных уравнений с n неизвестными называется система вида

где a ij и b i (i =1,…,m ; b =1,…,n ) – некоторые известные числа, а x 1 ,…,x n – неизвестные. В обозначении коэффициентов a ij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы .

Числа, стоящие в правых частях уравнений, b 1 ,…,b m называются свободными членами.

Совокупность n чисел c 1 ,…,c n называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c 1 ,…,c n вместо соответствующих неизвестных x 1 ,…,x n .

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной . В противном случае, т.е. если система не имеет решений, то она называется несовместной .

Рассмотрим способы нахождения решений системы.


МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче A X=B .

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением .

Пусть определитель матрицы отличен от нуля |A | ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A : . Поскольку A -1 A = E и E X = X , то получаем решение матричного уравнения в виде X = A -1 B .

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных . Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B .

Примеры. Решить системы уравнений.

ПРАВИЛО КРАМЕРА

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы .

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство . Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A 11 элемента a 11 , 2-ое уравнение – на A 21 и 3-е – на A 31 :

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений


МЕТОД ГАУССА

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x 1 . Для этого второе уравнение разделим на а 21 и умножим на –а 11 , а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а 31 и умножим на –а 11 , а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x 2 . Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x 3 , затем из 2-го уравнения x 2 и, наконец, из 1-го – x 1 .

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.


Таким образом, система имеет бесконечное множество решений.

Рассмотрим систему трех линейных уравнений с тремя неизвестными

а 11 , a 12 , …, a 33 – коэффициенты при неизвестных,

b 1 , b 2 , b 3 – свободные члены.

Решить систему (2.4) – значит найти такую упорядоченную тройку чисел x 1 =c 1 , x 2 =c 2 , x 3 =c 3 , при подстановке которых в уравнения системы последние обращаются в тождества.

Система уравнений, имеющая решения (единственное или бесчисленное множество), называется совместной , система уравнений, не имеющая решений, – несовместной .

Приведем три способа решений системы (2.4).

Правило Крамера

Составим определитель системы из коэффициентов при неизвестных

(2.5)

Если , то система (2.4) имеет единственное решение, которое находится по формулам Крамера:

где , , получены из определителя заменой соответственно первого, второго, третьего столбца столбцом из свободных членов системы (2.4).

(2.7)

Пример 7. Решить систему

Вычисляем определитель системы (2.5) и определители , , (2.6).

следовательно, система имеет единственное решение.

По формулам Крамера (2.6) находим:

Можно сделать проверку, подставив значения неизвестных в уравнения системы.

Итак, x 1 =x 2 =x 3 =1 – решение системы.

Метод Гаусса

Рассмотрим систему (2.4):

Метод Гаусса, иначе метод последовательного исключения неизвестных, состоит в следующем. Пусть Исключим из 2-го и 3-го уравнений системы x 1 . Получим систему:

Получим систему треугольного вида. Из 3-го уравнения найдем x 3 , подставляя его во 2-ое уравнение, найдем x 2 , затем из 1-го уравнения найдем x 1 , подставляя в него x 2 и x 3 .

Пример 8. Решить систему

Переставим 3-е и 1-ое уравнения, чтобы в 1-ом уравнении коэффициент при x 1 был равен 1.

Исключим x 1 из 2-го и 3-его уравнений. Для этого умножим 1-ое уравнение на (-4) и сложим его со 2-м уравнением; затем умножим 1-ое уравнение на (-6) и сложим с 3-м уравнением. Получим систему:

Исключим x 2 из 3-его уравнения. Для этого умножим 2-ое уравнение на (-13/10) и сложим с 3-м уравнением. Получим систему:

Из последнего уравнения находим x 3 = -1, подставляем во 2-ое уравнение:

10x 2 - 13(-1) = -7, -10x 2 = - 20, x 2 = 2.

Подставляя x 2 и x 3 в 1-ое уравнение, получим

Итак, решение системы: x 1 = 1, x 2 = 2, x 3 = -1.

Решение системы с помощью обратной матрицы

Дана система: (2.8)

Составим матрицу А из коэффициентов при неизвестных, матрицу-столбец Х – из неизвестных, матрицу-столбец В – из свободных членов.

,

Систему (2.8) можно записать в матричной форме так:

Матрица-решение Х находится по формуле:

А -1 – обратная матрица для матрицы А , она составляется из алгебраических дополнений элементов матрицы А по формуле (2.3):

– детерминант или определитель матрицы А , .

Пример 9. Решить систему:

Введем матрицы: ,

Обратная матрица вычислена в примере 6. По формуле (2.9) находим решение системы

Итак, x 1 =1, x 2 =1, x 3 =1.

Элементы векторной алгебры

Вектор – направленный отрезок; обозначается или . А – начало вектора, В – конец.

Длина или модуль вектора обозначается .

Рис. 21.

В координатном пространстве 0xyz вектор может быть представлен в виде

(3.1)

Эта формула дает разложение вектора по базису векторов , , ; , , - прямоугольные декартовые координаты вектора (иначе проекции вектора на оси координат).

Формулу (3.1) можно записать так:

– вектор имеет координаты , , .

Длина (модуль) вектора находится по формуле:

. (3.2)

Если вектор задан задан координатами начала A(x 1 ,y 1 ,z 1) и конца B(x 2 ,y 2 ,z 2) , то координаты находятся по формулам:

Если известны разложения векторов и по осям координат , то при сложении (вычитании) векторов их одноименные координаты складываются (вычитаются), при умножении вектора на число координаты вектора умножаются на это число, т.е.

(3.4)

Скалярным произведением векторов и , обозначается , называется число, равное произведению длин этих векторов на косинус угла между ними

. (3.5)

Если , , то

. (3.6)

Если векторы и коллинеарны (параллельны), то

. (3.7)

Если векторы и ортогональны (перпендикулярны), то

Или (3.8)

Пример 10. Даны точки А 1 (1,0,-1), A 2 (2,-1,1), A 3 (0,1,-2). Средствами векторной алгебры, учитывая, что найти:

1) координаты векторов и .

Используем формулу (3.3):

2) Координаты вектора

Используя формулы (3.4) и (3.5), получим

Или 1.2. По правилу треугольников: , и длину вектора . Отв.:

3. Даны точки А(0,-2,3), В(2,1,4), С(3,4,5). Найти:

а) координаты (проекции) векторов и

б) координаты вектора

с) длину вектора

4. Даны векторы Найти скалярное произведение векторов .

5. Доказать, что векторы и коллинеарны.

6. Доказать, что векторы ортогональны.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 7

РЕШЕНИЕ СИСТЕМЫ 3 ЛИНЕЙНЫХ УРАВНЕНИЙ

С ТРЕМЯ ПЕРЕМЕННЫМИ

Цель:

Развить умение преобразования матриц;

Сформировать навыки решения системы 3 линейных уравнений с тремя переменными методом Крамера ;

Закрепить знания о свойствах определителей 2 и 3 порядка;

Материально – техническое обеспечение: методические указания по выполнению работы;

Время выполнения: 2 академических часа;

Ход занятия:

    Изучить краткие теоретические сведения;

    Выполнить задания;

    Сделать вывод по работе;

    Подготовить защиту работы по контрольным вопросам.

Краткие теоретические сведения:

Матрицей называется квадратная или прямоугольная таблица , заполненная числами . Эти числа называются элементами матрицы .

Элементы матрицы , расположенные по горизонталям , образуют строки матрицы . Элементы матрицы , расположенные по вертикалям , образуют столбцы матрицы .

Строки нумеруются слева направо , начиная с номера 1, столбцы нумеруются сверху вниз , начиная с номера 1.

Матрица A , имеющая m строк и n столбцов , называется матрицей размера m на n и обозначается А m∙n . Элемент a i j матрицы A = { a ij } стоит на пересечении i - ой строки и j- го столбца .

Главной диагональю квадратной матрицы называется диагональ, ведущая из левого верхнего угла матрицы в правый нижний угол. Побочной диагональю квадратной матрицы называется диагональ, ведущая из левого нижнего угла матрицы в правый верхний угол.

Две матрицы считаются равными, если они имеют одинаковую размерность и их соответствующие элементы равны.

Каждую матрицу можно умножить на любое число, причем, если k – число, то k A ={ k a ij }.

Матрицы одного и того же размера A m ∙n и B m∙ n можно складывать, причем A m ∙n + B m∙ n = { a ij + b i j }.

Операция сложения матриц обладает свойствами A + B = B + A , A +( B + C ) = ( A + B ) + C .

Пример 1. Выполнив действия над матрицами, найдите матрицу С= 2A - B, где, .

Решение.

Вычислим матрицу 2A размерности 3x3:

Вычислим матрицу С = 2A - В размерности 3x3:

C = 2 A - B .

Определителем матрицы третьего порядка называется число, определяемое равенством:

.

Это число представляет алгебраическую сумму, состоящую из шести слагаемых. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы. Каждое слагаемое состоит из произведения трех сомножителей.

Рис.1.1. Рис.1.2.

Знаки, с которыми члены определителя входят в формулу нахождения определителя третьего порядка можно определить, пользуясь приведенной схемой, которая называется правилом треугольников или правилом Сарруса. Первые три слагаемые берутся со знаком плюс и определяются из рисунка (1.1.), а последующие три слагаемые берутся со знаком минус и определяются из рисунка (1.2).

Пример 2. Вычислить определитель третьего порядка по правилу Сарруса:

Решение:

Пример 3. Вычислить определитель третьего порядка методом разложения по элементам первой строки:

Решение:

Используем формулу:

3 -2 +2 = 3(-5 + 16) – 2(1+32) + 2(2 +20) = 33 – 66 + 44 = 11.

Рассмотрим основные свойства определителей:

    Определитель с нулевой строкой (столбцом) равен нулю.

    Если у матрицы умножить любую строку (любой столбец) на какое-либо число, то определитель матрицы умножится на это число.

    Определитель не меняется при транспонировании матрицы.

    Определитель меняет знак при перестановке любых двух строк (столбцов) матрицы.

    Определитель матрицы с двумя одинаковыми строками (столбцами) равен нулю.

    Определитель не меняется, если к какой-нибудь строке прибавить любую другую строку, умноженную на любое число. Аналогичное утверждение справедливо и для столбцов.

Свойства матриц и определителей широко применяют при решении системы трёх линейных уравнений с тремя неизвестными:

,

где х 1 , х 2 , х 3 – переменные, а 11 , а 12 ,…, а 33 - числовые коэффициенты. Следует помнить, что при решении системы возможен один из трёх вариантов ответа:

1) система имеет единственное решение – (х 1 ; х 2 ; х 3 );

2) система имеет бесконечно много решений (не определена);

3) система не имеет решений (несовместна).

Рассмотрим решение системы трёх линейных уравнений с тремя неизвестными методом Крамера, который позволяет найти единственное решение системы, опираясь на умение вычислять определители третьего порядка:

Пример 3. Найти решение системы трёх линейных уравнений с тремя неизвестными по формулам Крамера:

Решение. Находим определители третьего порядка, используя правило Сарруса или разложение по элементам первой строки :

Находим решение системы по формулам:

Ответ: (- 152; 270; -254)

Задания для самостоятельного выполнения:

I . Найти матрицу преобразования.

II . Вычислить определитель III порядка.

III . Решить систему методом Крамера .

Вариант 1.

1. C = A +3 B , если, . 2. .

Вариант 2.

1. C =2 A - B ,если, . 2. .

Вариант 3.

1. C = 3 A + B , если, . 2. .

Вариант 4.

1. C = A - 4 B , если, . 2. .

Вариант 5.

1. C = 4 A - B , если, . 2. .

Вариант 6.

1. C = A +2 B , если, . 2. .

Вариант 7.

1. C =2 A + B , если, . 2. .

Вариант 8.

1. C =3 A - B , если, . 2. .

Вариант 9.

1. C = A - 3 B , если, . 2. .

Вариант 10.

1. C = A - 2 B , если, . 2. .

Вариант 11.

1. C = A +4 B , если, . 2. .

Вариант 12.

1. C =4 A + B , если, . 2. .

Вариант 13.

1. C = A +3 B , если, . 2. .

Вариант 14.

1. C =2 A - B , если, . 2. .

Вариант 15.

1. C =3 A + B , если, . 2. .

Вопросы для самоконтроля:

    Что называется матрицей?

    Правила вычисления определителей третьего порядка?

    Запишите формулы Крамера для решения системы трёх линейных уравнений с тремя переменными.

2.3.1. Определение .

Пусть даны линейные уравнения:

a 1 x + b 1 y + c 1 z = d 1 , (2.3.1)

a 2 x + b 2 y + c 2 z = d 2 , (2.3.2)

a 3 x + b 3 y + c 3 z = d 3 . (2.3.3)

Если требуется найти общее решение уравнений (2.3.1) ¾ (2.3.3), то говорят, что они образуют систему . Система, состоящая из уравнений (2.3.1) ¾ (2.3.3), обозначается следующим образом:

Общее решение уравнений, составляющих систему, называется решением системы . Решить систему (2.3.4) ¾ это значит либо найти множество всех его решений, либо доказать, что их нет.

Как и в предыдущих случаях, ниже мы найдем условия, при которых система (2.3.4) имеет единственное решение, имеет более одного решения и не имеет ни одного решения.

2.3.2. Определение . Пусть дана система (2.3.4) линейных уравнений. Матрицы

называются соответственно (основной ) матрицей и расширенной матрицей системы.

2.3.3. Определения равносильных систем вида (2.3.4), а также элементарных преобразований 1-го и 2-го типов вводятся аналогично, как и для систем из двух уравнений с двумя и тремя неизвестными.

Элементарным преобразованием 3-го типа системы (2.3.4) называется перемена местами некоторых двух уравнений этой системы. Аналогично предыдущим случаям систем из 2-х уравнений при элементарных преобразованиях системы получается система , равносильная данной .

2.3.4. Упражнение . Решить системы уравнений:

Решение. а)

(1) Поменяли местами первое и второе уравнения системы (преобразование 3-го типа).

(2) Первое уравнение, умноженное на 4, вычли из второго, и первое уравнение, умноженное на 6, вычли из третьего (преобразование 2-го типа); таким образом, из второго и третьего уравнений исключили неизвестную x .

(3) Второе уравнение, умноженное на 14, вычли из третьего; из третьего исключили неизвестную y .

(4) Из последнего уравнения находим z = 1, подставляя которое во второе, находим y = 0. Наконец, подставляя y = 0 и z = 1 в первое уравнение, находим x = -2.ñ

(1) Поменяли местами первое и второе уравнения системы.

(2) Первое уравнение, умноженное на 4, вычли из второго, и первое уравнение, умноженное на 6, вычли из третьего.

(3) Второе и третье уравнения совпали. Одно из них исключаем из системы (или, по-другому, если вычесть из третьего уравнения второе, то третье уравнение обратится в тождество 0 = 0;оно исключается из системы. Полагаем z = a .

(4) Подставляем z = a во второе и первое уравнения.

(5) Подставляя y = 12 - 12a в первое уравнение, находим x .


в) Если первое уравнение разделить на 4, а третье ¾ на 6, то придём к равносильной системе

которая равносильна уравнению x - 2y - z = -3. Решения этого уравнения известны (см. Пример 2.2.3 б))

Последнее равенство в полученной системе является противоречивым. Следовательно, система решений не имеет.

Преобразования (1) и (2) ¾ точно такие же, как и соответствующие преобразования системы б))

(3) Из последнего уравнения вычли второе.

Ответ: а) (-2; 0; 1);

б) (21 - 23a ; 12 - 12a ; a ), a ÎR ;

в) {(-3 + 2a + b ; a ; b )|a , b ÎR };

г) Система решений не имеет.

2.3.5. Из предыдущих примеров вытекает, что система с тремя неизвестными , как и система с двумя неизвестными, может иметь единственное решение , бесконечное множество решений и не иметь ни одного решения . Ниже мы разберём все возможные случаи. Но предварительно введём некоторые обозначения.

Через D обозначим определитель матрицы системы:

Через D 1 обозначим определитель, полученный из D заменой первого столбца на столбец свободных членов:

Аналогично, положим

D 2 = и D 3 = .

2.3.6. Теорема . Если D¹0, то система (2.3.4) имеет единственное решение

, , . (2.3.5)

Формулы (2.3.5) называются формулами = = 0 для всех i ¹j и хотя бы один из определителей , , не равен нулю , то система решений не имеет .

4) Если = = = = = = 0 для всех i ¹j , то система имеет бесконечное множество решений , зависящих от двух параметров .

Системы трёх линейных уравнений с тремя неизвестными имеют вид:

Где a, b, c, d, e, f, g, h, p, q, r, s – заданные числа ; x, y, z – неизвестные . Числа a , b , c , e , f , g , p , q , r коэффициенты при неизвестных ; d , h , s свободные члены .

Нормальный вид уравнения первой степени с тремя неизвестными .

Если в уравнении 1 -й степени с 3 неизвестными х, у и z , сделать определённые преобразования, то мы приведем уравнение к такому виду (называемому нормальным), при котором в левой части уравнения находятся только три члена: один с х , другой с у и третий с z , а в правой части будет один член, не содержащий неизвестных.

ПРИМЕР:

Уравнение :

5х – 3у – 4z = –12.

Общий вид его есть следующий :

ах + by + cz = d,
где а, b, с и d какие-нибудь относительные числа .

Неопределенность двух и одного уравнения с тремя неизвестными .

ПРИМЕР:

Предположим, нам дана система 2 уравнений с 3 неизвестными :

Назначим одному неизвестному, например z , какое-нибудь произвольное число, предположим 1 , и подставим это число на место z :

Мы получили таким образом систему 2 уравнений с 2 неизвестными. Решив ее каким-нибудь способом, найдем :
х = 2, у = 3 ;

значит, данная система с 3 неизвестными удовлетворяется при
х = 2 ; у = 3; z = 1.

Дадим теперь неизвестному z какое-нибудь иное значение, например z = 0 , и подставим это значение в данную систему уравнений, получим :

Мы снова получим систему 2 уравнений с 2 неизвестными. Решив ее каким-нибудь способом, найдем :

х = 20 / 11 = 1 9 / 11 ;
у = 2 4 / 11 .

Значит, данная система удовлетворяется при

х = 1 9 / 11 ;
у = 2 4 / 11 и
z = 0 .

Назначив для z еще какое-нибудь (третье) значение, мы снова получим систему 2 уравнений с 2 неизвестными, из которой найдем новые значения для х и у . Так как для z мы можем назначать сколько угодно различных чисел, то и для х и у можем получить сколько угодно значений (соответствующих взятым значениям z ). Значит, 2 уравнения с 3 неизвестными допускают бесчисленное множество решений ; другими словами, такая
система неопределенна .

Еще большая неопределенность будет, если имеется всего 1 уравнение c 3 неизвестными. Тогда можно будет для каких-нибудь 2 неизвестных назначить произвольные числа; третье же неизвестное найдется из данного уравнения, если подставить в него значения, взятые произвольно для двух неизвестных.
Для того, чтобы можно было найти определенные численные значения для трех неизвестных х , у и z , необходимо, чтобы была задана система 3 уравнений. Такая система может быть решена способом подстановки, а также и способом сложения или вычитания уравнений. Покажем применение этих способов на следующем примере (каждое уравнение предварительно приведено к нормальному виду):

ПРИМЕР:


Способ подстановки .

Из какого-нибудь уравнения, например из первого, определим одно неизвестное, например х , как функцию от двух остальных неизвестных :

Так как во всех уравнениях х означает одно и то же число, то мы можем подставить найденное выражение на место х в остальные уравнения :

Мы приходим таким образом к системе 2 уравнений с 2 неизвестными у и z . Решив эту систему по какому-нибудь из способов, указанных раньше, найдем численные значения для у и z . В нашем примере это будут значения : у = 3, z = 2 ; подставив эти числа в выражение, выведенное нами для х , найдем и это неизвестное :

Таким образом, предложенная система имеет решение

х = 1, у = 3, z = 2

(в чем можно убедиться поверкою ).

Способ сложения или вычитания .

Из 3 данных уравнений возьмем какие-нибудь два, напр. 1 -е и 2 -е, и, уравняв в них коэффициенты перед одним неизвестным, напр., перед z , исключим из них это неизвестное способом сложения или вычитания ; от этого получим одно уравнение c 2 неизвестными х и у . Потом, возьмем какие-нибудь два других уравнения из 3 данных, напр. 1 -е и 3 (или 2 -е и 3 ), и тем же способом исключим из них то же неизвестное т. е. z ; от этого получим еще одно уравнение с х и у :

Решим получившиеся два уравнения :

x = 1, у = 3 .

Вставим эти числа в одно из трех данных уравнений, например, в первое :

3 × 1 – 2 × 3 + 5 z = 7;
5 z = 7 – 3 + 6 = 10;
z = 2.

Замечание.

Теми же двумя способами мы можем привести систему 4 уравнений с 4 неизвестными к системе 3 уравнений с 3 неизвестными (а эту систему – к системе 2 уравнений с 2 неизвестными и т. д.). Вообще систему m уравнений с m неизвестными мы можем привести к системе m –1 уравнений с m –1 неизвестными (а эту систему к системе m –2 уравнений с m –2 неизвестными и т. д.).

Некоторые особые случаи систем уравнений .

Случай, когда не все неизвестные входят в каждое из данных уравнений .

ПРИМЕР:

В этом случае система решается быстрее, чем обыкновенно, так как в некоторых уравнениях уже исключены те или другие неизвестные. Надо только сообразить, какие неизвестные и из каких уравнений следует исключить, чтобы возможно скорее дойти до одного уравнения с одним неизвестным. В нашем примере, исключив z из 1 -го и 3 -го уравнений и v из 2 -го и 1 -го, получим 2 уравнения с х и у :