Одним из важных открытий современного естествознания является тот факт, что все многообразие окружающего нас физического мира связано с тем или иным нарушением определенных видов симметрий. Чтобы это утверждение стало более понятным, рассмотрим подробнее понятие симметрии.

«Симметричное обозначает нечто, обладающее хорошим соотношением пропорций, а симметрия – тот вид согласованности отдельных частей, который объединяет их в целое. Красота тесно связана с симметрией», - писал Г. Вейль в своей книге «Этюды о симметрии». Он ссылается при этом не только на пространственные соотношения, т.е. геометрическую симметрию. Разновидностью симметрии он считает гармонию в музыке, указывающую на акустические приложения симметрии.

Зеркальная симметрия в геометрии относится к операциям отражения или вращения. Она достаточно широко встречается в природе. Наибольшей симметрией в природе обладают кристаллы (например, симметрия снежинок, природных кристаллов), однако не у всех из них наблюдается зеркальная симметрия. Известны так называемые оптически активные кристаллы , которые поворачивают плоскость поляризации падающего на них света. .

В общем случае симметрия выражает степень упорядоченности какой-либо системы или объекта. Например, круг более упорядочен и, следовательно, симметричен, чем квадрат. В свою очередь, квадрат более симметричен, чем прямоугольник. Другими словами, симметрия – это неизменность (инвариантность) каких-либо свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Например, окружность симметрична относительно любой прямой (оси симметрии), лежащей в ее плоскости и проходящей через центр, она симметрична и относительно центра.Операциями симметрии в данном случае будут зеркальное отражение относительно оси и вращение относительно центра окружности.

В широком смысле симметрия – это понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние, относительную устойчивость, пропорциональность и соразмерность между частями целого .

Противоположным понятием является понятие асимметрии , которое отражает существующее в объективном миренарушение порядка, равновесия, относительной устойчивости, пропорциональности и соразмерности между отдельными частями целого, связанное с изменением, развитием и организационной перестройкой . Уже отсюда следует, что асимметрия может рассматриваться как источник развития, эволюции, образования нового.

Симметрия может быть не только геометрической. Различают геометрическую и динамическую формы симметрии (и, соответственно, асимметрии).

К геометрической форме симметрии (внешние симметрии) относятся свойства пространства – времени, такие как однородность пространства и времени, изотропность пространства, эквивалентность инерциальных систем отсчета и т.д.

К динамической форме относятся симметрии, выражающиесвойства физических взаимодействий , например, симметрии электрического заряда, симметрии спина и т.п. (внутренние симметрии). Современная физика, однако, раскрывает возможность сведения всех симметрий к геометрическим симметриям.

Калибровочные симметрии. Важным понятием в современной физике является понятие калибровочной симметрии.Калибровочные симметрии связаны с инвариантностью относительно масштабных преобразований . Сам термин «калибровка» происходит из жаргона железнодорожников, где он означает переход с узкой колеи на широкую. Под калибровкой, таким образом, первоначально понималось именно изменение уровня или масштаба. Так в СТО физические законы не изменяются относительно переноса (сдвига) системы координат. Траектории движения остаются прямолинейными, пространственный сдвиг остается одинаковым у всех точек пространства. Таким образом, здесь работают глобальные калибровочные преобразования.

Формы симметрии являются одновременно и формами асимметрии. Так геометрические асимметрии выражают неоднородность пространства – времени, анизотропность пространства и т.д. Динамические асимметрии проявляются в различиях между протонами и нейтронами в электромагнитных взаимодействиях, различие между частицами и античастицами (по электрическому, барионному зарядам) и т.д. .

К началу документа

  • Симметрия в природе.

  • "Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство"

  • Герман Веель

Симметрия в природе.

    Симметрией обладают не только геометрические фигуры или вещи, сделанные рукой человека, но и многие творения природы (бабочки, стрекозы, листья, морские звезды, снежинки и т. д.). Особенно разнообразны свойства симметрии кристаллов... Одни из них более симметричны, другие — менее. Долгое время ученые-кристаллографы не могли описать всех видов симметрии кристаллов. Решил эту задачу в 1890 г. русский ученый Е. С Федоров. Он доказал, что есть ровно 230 групп, переводящих в себя кристаллические решетки. Это открытие значительно облегчило кристаллографам изучение видов кристаллов, которые могут существовать в природе. Следует, однако, заметить, что многообразие кристаллов в природе настолько велико, что даже использование группового подхода не дало еще способа описать все возможные формы кристаллов.


Симметрия в природе.

    Очень широко используется теория групп симметрии в квантовой физике. Уравнения, которыми описывается поведение электронов в атоме (так называемое волновое уравнение Шредингера), уже при небольшом числе электронов настолько сложны, что непосредственное решение их практически невозможно. Однако, используя свойства симметрии атома (неизменность электромагнитного поля ядра при поворотах и симметриях, возможность некоторых электронов между собой, т.е. симметричное расположение этих электронов в атоме и т.д.), удается исследовать их решения, не решая уравнений. Вообще, использование теории групп является мощным математическим методом исследования и учета симметрии явлений природы.


Симметрия в живой природе.


Зеркальная симметрия в природе.


Золотое сечение.

    ЗОЛОТОЕ СЕЧЕНИЕ — теоретически термин сформирован в эпоху Возрождения и обозначает строго определенное математическое соотношение пропорций, при котором одна из двух составных частей во столько же раз больше другой, во сколько сама меньше целого. Художники и теоретики прошлого нередко считали золотое сечение идеальным (абсолютным) выражением пропорциональности, на деле же эстетическое значение этого «непреложного закона» ограниченно в силу известной неуравновешенности горизонтального и вертикального направлений. В практике изобразительного искусства 3. с. редко применяется в его абсолютной, неизменной форме; большое значение имеют здесь характер и мера отклонений от абстрактной математической пропорциональности.


Золотое сечение в природе

  • Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах - рост вверх или расстилание по поверхности земли и закручивание по спирали.

  • Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

  • Рис.1. Спираль Архимеда.



Принципы формообразования в природе.

    В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции - длина ее хвоста так относится к длине остального тела, как 62 к 38. И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы - симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста. Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.


Золотое сечение в природе


Симметрия в искусстве.

  • В искусстве симметрия 1 играет огромную роль, многие шедевры архитектуры обладают симметрией. При этом обычно имеется в виду зеркальная симметрия. Термин "симметрия" в разные исторические эпохи использовался для обозначения разных понятий.

  • Симметрия - соразмерность, правильность в расположении частей целого.

  • Для греков симметрия означала соразмерность. Считалось, что две величины являются соразмерными, если существует третья величина, на которую эти две величины делятся без остатка. Здание (или статуя) считалось симметричным, если оно имело какую-то легко различимую часть, такую, что размеры всех остальных частей получались умножением этой части на целые числа, и таким образом исходная часть служила видимым и понятным модулем.


Золотое сечение в искусстве.

    Искусствоведы дружно утверждают, что на живописном полотне существуют четыре точки повышенного внимания. Располагаются они по углам четырехугольника, и зависят от пропорций подрамника. Считается, что какими бы ни были масштабы и размеры холста, все четыре точки обусловлены золотым сечением. Все четыре точки (их называют зрительными центрами) расположены на расстоянии 3/8 и 5/8 от краев Полагают, что это матрица композиции любого произведения изобразительного искусства.

    Вот, к примеру, поступившая в 1785 г. в Государственный Эрмитаж из Академии наук камея «Суд Париса». (Она украшает кубок Петра I.) Итальянские камнерезы не раз повторяли этот сюжет на камеях, инталиях и резных раковинах. В каталоге можно прочитать, что изобразительным прототипом послужила гравюра Маркантонио Раймонди по утраченному произведению Рафаэля.


Золотое сечение в искусстве.

  • И действительно, одна из четырех точек золотого сечения приходится на золотое яблоко в руке Париса. А если точнее, то на точку соединения яблока с ладонью.

  • Предположим, Раймонди сознательно высчитывал эту точку. Но вряд ли можно поверить, что и скандинавский мастер середины VIII века сначала сделал «золотые» вычисления, и по их результату задал пропорции бронзовому Одину.

  • Очевидно, это произошло бессознательно, то есть интуитивно. А если так, значит, золотое сечение не нуждается в том, чтобы мастер (художник или ремесленник) сознательно поклонялся «золоту». Достаточно, чтобы он поклонялся красоте.

  • Рис.2.

  • Поющий Один из Старой Ладоги.

  • Бронза. Середина VIII века.

  • Высота 5,4 см. ГЭ, № 2551/2.



Золотое сечение в искусстве.

  • «Явление Христа народу» Александра Иванова. Явственный эффект приближение Мессии к людям возникает из-за того, что он уже прошел точку золотого сечения (перекрестье оранжевых линий) и сейчас входит в ту точку, которую мы будем называть точкой серебряного сечения (это отрезок, деленный на число π, или отрезок минус отрезок, деленный на число π).


«Явление Христа народу».


    Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность - одна из загадок истории. Сам Леонардо да Винчи говорил: “Пусть никто, не будучи математиком, не дерзнет читать мои труды”. Он снискал славу непревзойденного художника, великого ученого, гения, предвосхитившего многие изобретения, которые не были осуществлены вплоть до XX в. Нет сомнений, что Леонардо да Винчи был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится “обо всем на свете”. Он писал справа налево неразборчивым почерком и левой рукой. Это самый известный из существующих образец зеркального письма. Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Существует очень много версий об истории этого портрета. Вот одна из них. Однажды Леонардо да Винчи получил заказ от банкира Франческо де ле Джокондо написать портрет молодой женщины, жены банкира, Монны Лизы. Женщина не была красива, но в ней привлекала простота и естественность облика. Леонардо согласился писать портрет. Его модель была печальной и грустной, но Леонардо рассказал ей сказку, услышав которую, она стала живой и интересной.


Золотое сечение в работах Леонардо да Винчи.

  • А при анализе трех портретов Работы Леонардо да Винчи оказывается, что у них практически идентичная композиция. И построена она не на золотом сечении, а на √2, горизонтальная линия которого на каждой из трех работ проходит через кончик носа.


Золотое сечение в картине И. И. Шишкина"Сосновая роща"

    На этой знаменитой картине И. И. Шишкина с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны - освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины по золотому сечению и дальше. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия, в соответствии с замыслом художника. Когда же замысел художника иной, если, скажем, он создает картину с бурно развивающимся действием, подобная геометрическая схема композиции (с преобладанием вертикалей и горизонталей) становится неприемлемой.


Золотая спираль в картине Рафаэля"Избиение младенцев"

    В отличии от золотого сечения ощущение динамики, волнения проявляется, пожалуй, сильней всего в другой простой геометрической фигуре - спирали. Многофигурная композиция, выполненная в 1509 - 1510 годах Рафаэлем, когда прославленный живописец создавал свои фрески в Ватикане, как раз отличается динамизмом и драматизмом сюжета. Рафаэль так и не довел свой замысел до завершения, однако, его эскиз был гравирован неизвестным итальянским графиком Маркантинио Раймонди, который на основе этого эскиза и создал гравюру"Избиение младенцев".

    На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка, - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Если естественным образом соединить эти куски кривой пунктиром, то с очень большой точностью получается...золотая спираль! Это можно проверить, измеряя отношение длин отрезков, высекаемых спиралью на прямых, проходящих через начало кривой.


Золотое сечение в архитектуре.

    Как указывает Г.И. Соколов, протяженность холма перед Парфеноном, длины храма Афины и участка Акрополя за Парфеноном соотносятся как отрезки золотой пропорции. При взгляде на Парфенон у места расположения монументальных ворот при входе в город (пропилеи) отношения массива скалы у храма также соответствует золотой пропорции. Таким образом, золотая пропорция была использована уже при создании композиции храмов на священном холме.

  • Многие исследователи, стремившиеся раскрыть секрет гармонии Парфенона, искали и находили в соотношениях ее частей золотое сечение. Если принять за единицу ширины торцовый фасад храма, то получим прогрессию, состоящую из восьми членов ряда: 1: j: j 2: j 3: j 4: j 5: j 6: j 7, где j =1,618 .


Золотое сечение в литературе.


Симметрия в повести «Собачье сердце»


Золотые пропорции в литературе. Поэзия и золотое сечение

    Многое в структуре поэтических произведений роднит этот вид искусства с музыкой. Четкий ритм, закономерное чередование ударных и безударных слогов, упорядоченная размерность стихотворений, их эмоциональная насыщенность делают поэзию родной сестрой музыкальных произведений. Каждый стих обладает своей музыкальной формой - своей ритмикой и мелодией. Можно ожидать, что в строении стихотворений проявятся некоторые черты музыкальных произведений, закономерности музыкальной гармонии, а следовательно, и золотая пропорция.

    Начнем с величины стихотворения, то есть количества строк в нем. Казалось бы, этот параметр стихотворения может изменяться произвольно. Однако оказалось, что это не так. Например, проведенный Н. Васютинским анализ стихотворений А.С. Пушкина с этой точки зрения показал, что размеры стихов распределены весьма неравномерно; оказалось, что Пушкин явно предпочитает размеры в 5, 8, 13, 21 и 34 строк (числа Фибоначчи).


Золотое сечение в стихотворении А.С. Пушкина.

  • Многими исследователями было замечено, что стихотворения подобны музыкальным произведениям; в них также существуют кульминационные пункты, которые делят стихотворение в пропорции золотого сечения. Рассмотрим, например, стихотворение А.С. Пушкина "Сапожник":


Золотые пропорции в литературе.

  • Одно из последних стихотворений Пушкина "Не дорого ценю я громкие права..." состоит из 21 строки и в нем выделяется две смысловые части: в 13 и 8 строк.


Шумский Вячеслав

Исследовательская работа по математике на тему

«Симметрия в природе, технике, архитектуре и искусстве»

Скачать:

Предварительный просмотр:

МКОУ Венгеровская СОШ №2

Исследовательская работа по математике на тему

«Симметрия в природе, технике, архитектуре и искусстве»

Ученика 6а класса

Шумского Вячеслава

2012/2013 уч. Год

1. Введение

2. Основная часть

  1. Симметрия в природе
  2. Симметрия в архитектуре
  3. Симметрия в технике
  4. Симметрия в искусстве

3.Заключение

4.Литература

ВВЕДЕНИЕ

«...быть прекрасным значит быть симметричным и соразмерным».

С давних времен математика считается одной из главных наук. Математика одна из древнейших и необходимых для прогресса разных дисциплин наука.

Числа, формулы, геометрические фигуры в математике, внешне холодные и сухие, но полные внутренней красоты.

–"Можно ли с помощью симметрии создать порядок, красоту и совершенство?",

"Во всём ли в жизни должна быть симметрия?"– эти вопросы я поставила перед собой уже давно, и попробую ответить на них в этой работе.

Предметом данного исследования является симметрия как одна из математических основ з а конов красоты, взаимосвязи науки математики с окр у жающими нас живы ми и неживыми объектами.

Актуальность проблемы заключена в том, что бы показать, что красота является внешним признаком симметрии и, прежде всего, имеет математич е скую основу.

Цель работы - на примерах найти и показать симметрию как основу крас о ты в природе, технике, архитектуре и искусстве .

Задачи работы:

  1. собрать информацию по рассматриваемой теме;
  2. выделить симметрию как математическую основу законов красоты в и с кусстве (архите к тура, живопись, скульптура, природа);
  3. найти математические мотивы в филологии;
  4. изучить и выделить основные направления применения симметрии, как о с новы красоты в творчестве человека.

Результаты исследования могут заинтересовать учащихся и педагогов при изучении математики, истории, биологии, изобразительного искусс т ва, литер а туры, технологии и показать взаимосвязь всех этих дисциплин с математикой.

Немного о симметрии

Симме́три́я (др.-греч. συμμετρία - «соразмерность»), в широком смысле - неизменность при каких-либо преобразованиях. Так, например, сферическая симметрия тела означает, что вид тела не изменится, если его вращать в пространстве на произвольные углы (сохраняя одну точку на месте). Двусторонняя симметрия означает, что правая и левая сторона относительно какой-либо плоскости выглядят одинаково.

С симметрией мы встречаемся везде – в природе, технике, искусстве, науке. Отметим, например, симметрию, свойственную бабочке и кленовому листу, симметрию автомобиля и самолета, симметрию в ритмическом построении стихотворения и музыкальной фразы, симметрию орнаментов и бордюров, симметрию атомной структуры молекул и кристаллов. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Симметрия в природе

В отличие от искусства или техники, красота в природе не создаётся, а лишь фи к сируется, выражается. Среди бесконечного разнообразия форм живой и неживой природы в изобилии встречаются такие совершенные образы, чей вид неизменно привлекает наше внимание. К числу таких образов относятся некоторые кр и сталлы, многие растения.

Примеры трансляции подобия в природных формах. Лист подчиняется принципу зеркальной симметрии с одновременным уменьшением элементов (направленностью симметрии), цветок отличается соединением радиальной и спиральной (в трех измерениях) симметрии. Подобным же образом строятся динамично-симметричные формы раковин, листьев папоротника .

Каждая снежинка- это маленький кристалл замерзшей воды. Форма снеж и нок может быть очень разнообразной, но все они обладают симметрией - поворо т ной симметрией 6-го порядка и, кроме того, зеркальной симметрией .

Радиальная симметрия снежинок

В пространстве существуют тела, обладающие винтовой си м метрией, т.е. совмещаемые со своим первоначальным положением после поворота на какой-либо угол вокруг оси, дополненного сдвигом вдоль той же оси. Если да н ный угол поделить на 360 градусов– рациональное число, то поворотная ось ок а зывается также осью переноса.

Фигура, обладающая винтовой симметрией, которая осуществляется переносом вдоль вертикальной оси, дополненным вращением вокруг неё на 90°.

Симметрия в архитектуре.

"...быть прекрасным значит быть

симметричным и соразмерным"

Платон

(древнегреческий философ, 428 – 348 г. до н.э.)

Мы восхищаемся красотой окружающего мира и не задумываемся, что лежит в основе этой красоты.

Среди бесконечного разнообразия форм живой и неживой природы встречаются такие совершенные творения, чей вид пр и влекает наше вним а ние. Если внимательно присмотреться, то можно увидеть что основу кр а соты многих форм, созданных природой и чел о веком, составляет симметрия, то ч нее, все ее виды - от самых простых до самых сложных. О закономерности красоты задумывались мн о гие великие люди. Например, Л. Н. Толстой гов о рил, стоя перед черной доской и рисуя на ней м е лом разные фигуры: «Я вдруг был поражен мыслью: почему симметрия п о нятна гл а зу? Что такое симме т рия? Это врожденное чувство, отвечал я сам себе. На чем же оно основано?"

Греческое слово симметрия обозначает «соразмерность». Под симметрией понимают всякую правильность во внутреннем строении тела или фигуры. Учение о различных видах симметрии представляет большую и важную ветвь геометрии, связанную со многими отраслями естествознания, техники и искусства.

Симметричность очень приятна глазу. Я часто любовалась и любуюсь листьями, цветами, птицами, живо т ными или творениями человека: здани я ми, техникой, - всем тем, что нас с детства окружает, тем, что стремится к красоте и гармонии.

Сколько живёт человек, столько он и строит. Трудно найти человека, кот о рый не имел бы какого- либо представления о симметрии, как о признаке кр а соты. В обычной «нематематической» жизни мы ча с то говорим о красоте, подразумевая при этом симме т рию. Только поэтому мы чаще используем слова «симметри ч ный», «симметрично расположенный». С симметрией мы встречаемся везде - в природе, техн и ке, искусстве... Велика роль симметрии и пропорций в архите к туре. Человек всегда испол ь зовал симметрию и пр о порциональность в архитектуре. Древним храмам, башням средневековых замков, современным зданиям она придаёт гармоничность, законченность. Только неотступно следуя законам геометрии, архитекторы древности могли создавать свои шедевры.

Архитектура - удивительная область человеческой деятельности. В ней тесно переплетены и строго уравновешены наука, техника, искусство.

Прошли века, но роль симметрии не изменилась.

Появляются новые строительные материалы, но математические основы законов красоты в архитектуре остаются неизменными. Одним из художес т венных средств, которые он использует, является композиция здания. От неё в первую очередь зависит впечатление, кот о рое оставляет архитекту р ное соор у жение. Элементы симметрии можно увидеть в а р хитектуре фасадов, в оформлении внутренних помещений, колоннах, потолках и т.д. В большинс т ве сл у чаев они о б ладают осевой симметрией. В скульптуре основу композиции и изображения фигур составляет тоже теория пропорций. Использование симметрии в конструкции зданий, сим ме т ричных элементов в о т делке, а также симметрично расположенные строения создают красоту и га р монию.

Симметрия в технике

Большинство самых необходимых для нас предметов - от книги, ложки, чайника и молотка до газовой плиты, холодильника и пылесоса - тоже обладает симметрией.

Большинство транспортных средств, от детской коляски до сверхзвукового реактивного воздушного лайнера, предназначенных для движения по земной поверхности или параллельно ей, так же имеют осевую симметрию.

Космическая ракета, устремляющаяся вверх, в небо имеет и осевую, и центральную симметрию.

Различные фигуры, чаще симметричные, используются для составления орнаментов в народном творчестве.

Симметрия в искусстве.

В искусстве существует математическая теория живописи. Это теория перспективы. Так как перспектива - это учение о том, как передать на плоском листе б у маги ощущение глубины пространства, то есть передать окр у жающим мир таким, как мы его видим. Оно основано на соблюдении нескольких законов. Законы перспективы заключаются в том, что чем дальше от нас находится предмет, тем он нам кажется меньше, с о всем нечетким, на нем меньше деталей, основание его выше.

Если мы будем соблюдать все пр а ви ла, то картины будут получаться гармоничны ми , они будут иметь ощущ е ние устойчивости, равновесия. Если мы наруши м некоторые правила, то изображение сразу же станет оригинал ьным, своеобразным и интересным, таким, например, как на данном рисунке:

Таким образом, красота живописи обусловлена, в первую очередь, закон а ми математики.

Картина И. Левитана «Осень» навевает покой и тихую грусть, а картина Айвазовского пробуждает чувства тревоги, беспокойства, грусти.

ЗАКЛЮЧЕНИЕ

«Принцип симметрии охватывает все новые области. Из области криста л лографии, физики твердого тела он вошел в область химии, в область молекуля р ных процессов и в физику атома. Нет сомнения, что его проявления мы найдем в еще более далеком от окружающих нас комплексов мире электрона, и ему подч и нены будут явления квантов», – это слова академика В. И. Вернадского, занимавшегося изучением принципов симметрии в неживой природе.

Симметрия, проявляясь в самых различных объектах материального мира, нес о мненно, отражает наиболее общие, наиболее фундаментальные его свойства.
Поэтому исследование симметрии разнообразных природных объектов и сопоста
в ление его результатов является удобным и надежным инструментом познания о с новных закономерностей существования материи.

Можно увидеть, что это кажущаяся простота уведет нас далеко в мир науки и те х ники и позволит время от времени подвергать испытанию способности нашего мозга (так как именно он запрограммирован на симметрию).

ЛИТЕРАТУРА

1. Современный словарь иностранных слов. М.: Русский язык,

1993г.Советский энциклопедический словарь М.: Советская энциклопедия, 1980г.

2. Урманцев Ю.А. Симметрия природы и природа симметрии М.: Мысль,

1974г.

3. Пидоу Дэн Геометрия и искусство М.: Мир, 1979г.

4. Шафрановский И.И. Симметрия в геологии Л.: Недра, 1975г.

5. Трофимов В. Введение в геометрическом многообразии с симметриями

М.: МГУ 1989г.

Симметрия в пространстве - это красивое, гармоничное и уравновешенное пропорциональное соотношение частей или элементов различных форм предметов, организмов или объектов. В пространстве вокруг нас можно наблюдать очень много неживых предметов симметричной формы. Живые организмы, как простейшие, так и сложные высокоорганизованные, также в своем строении имеют элементы симметрии.

Стремление к совершенству

Симметричную форму можно отождествить с совершенством и гармонией. Недаром такие слова, как «симметрия» и «совершенство» являются синонимами в языках многих народов.

Симметрия в пространстве встречается повсюду. Многообразие форм растений и живых организмов поражает соразмерностью, согласованностью и эргономичностью формы. Тут все продумано до мелочей: поразительная красота, изящность пропорций и ничего лишнего. Все предусмотрено для наилучшей функциональности жизни.

Центральная симметрия

В пространстве окружающего нас мира неживой природы явственно видна в устройстве кристаллов. Этот вид симметрии хорошо прослеживается в строении снежинок, являющихся кристаллами льда. Их формы поражают многообразием. Но все они центрально симметричны.

Примером центральной или радиальной симметрии могут служить цветы растений: подсолнух, ромашка, ирис, астра. Этот вид симметрии еще называют поворотным. Если лепестки цветка или лучи снежинки поворачивать относительно центра, то они наложатся друг на друга.

Зеркальная симметрия

Зеркальная симметрия в пространстве окружающего нас природного мира наблюдается у растений и животных. дуба или папоротника, жук или бабочка, паук или гусеница, мышь или заяц - вот только некоторые примеры, где можно в живых организмах увидеть билатеральную, или зеркальную симметрию. Симметричны человека, а также части тела: руки, ноги. В этих формах мы наблюдаем как бы зеркальное отражение одной половины объекта от другой. Если расположить объект в плоскости, то его изображение можно мысленно согнуть посередине, и одна половинка наложится на другую.

Гипотеза возникновения симметрии

В научном мире существует несколько гипотез, с помощью которых пытаются объяснить, как возникла симметрия в пространстве нашего мира. Согласно одной из них, все, что растет вверх или вниз, подчинено закону А то, что формируется параллельно земной поверхности или под наклоном к ней, принимает зеркально-симметричную форму. Эти свойства пытаются объяснить земным притяжением от центра планеты и различной степенью освещенности объектов солнечным светом в зависимости от их расположения.

Симметрия в науке и искусстве

Симметрия в пространстве была оценена художниками, скульпторами и архитекторами еще в глубокой древности. Мы видим элементы симметрии в древних наскальных изображениях, в орнаментальных украшениях древних предметов и оружия. Египетские пирамиды и пирамиды майя, купола славянских соборов, греческих храмов и дворцов, античные арки и амфитеатры, фасад Белого дома и Московский Кремль - вот только некоторые примеры стремления к возвышенной красоте и подлинному совершенству.

Понятия симметрии серьезно разрабатывались математиками. Проведенные математические исследования позволили выделить основные закономерности симметрии на плоскости и в пространстве. Физика и химия также не обошли стороной эту интересную природную закономерность. Академик В. И. Вернадский считал, что «симметрия... охватывает свойства всех полей, с которыми имеет дело физик и химик». Благодаря симметричному строению атомов, молекулы вступают в различные реакции и обусловливают физические свойства формирования кристаллов. Даже если законы физики, устанавливающие физические величины, будут неизменны при различных преобразованиях, то можно сказать, что эти законы обладают инвариантностью или симметрией по отношению к данным преобразованиям.

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 55

СОВЕТСКОГО РАЙОНА ГОРОД ВОРОНЕЖ

Научно-исследовательская работа

на тему:

«Симметрия в жизни человека»

Выполнил ученик

8 «Б» класса:

Митин Алексей

Руководитель:

учитель математики

Беляева М.В.

Воронеж, 2015г.

Оглавление:


  1. Актуальность темы.

  2. Симметрия и её виды.

  3. Симметрия в искусстве.

    1. Архитектура;

    2. Живопись;

    3. Литература и музыка.

  4. Симметрия и техника.

  5. Симметрия в разных науках.

    1. Биология;

    2. Физика;

    3. Химия.

  6. Выводы.

  7. Используемая литература.

Актуальность темы.

В основе красоты многих форм лежит симметрия или её виды. Эта тема очень обширна и затрагивает помимо математики многие другие области наук, искусства, техники. Именно симметрия преобладает в природе над асимметрией. Представить или вспомнить какое-нибудь асимметричное животное сможет не каждый, ведь их не много и в основном это различные бактерии или простейшие организмы, а так же животные, которые получили свойство асимметрии из-за необходимости. Познание природы и жизни – первая задача человека. И одной из главных ступеней к этой цели является познание симметрии.

Симметрия является той идеей, с помощью которой человек веками пытается объяснить и создать порядок, красоту и совершенство.

Герман Вейль

Цели исследования:


  • изучить понятия симметрии и её видов (центральная, осевая, поворотная, зеркальная и др.),

  • провести исследования по изучению явлений симметрии в биологии, физике, архитектуре, живописи, литературе, транспорте и технике;

  • приобретение навыков самостоятельной работы с большими объемами информации.

Симметрия и её виды.

Понятие симметрии начало складываться очень давно. Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Сейчас она широко используется во многих направлениях современной науки.

Симметрия – это соразмерность, пропорциональность в расположении частей чего-нибудь по обе стороны от центра.

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.

Различают три основных вида симметрии: зеркальная, осевая и центральная. Так же есть скользящая, винтовая, точечная, поступательная, фрактальная и другие виды симметрии.

Осевая симметрия: две точки называются симметричными относительно прямой, если эта прямая проходит через середину отрезка, соединяющего эти точки и перпендикулярна к нему. Каждая точка этой прямой считается симметричной самой себе. Фигура называется симметричной относительно прямой, если для каждой точки фигуры симметричная ей точка относительно прямой также принадлежит этой фигуре. Также говорят, что фигура обладает осевой симметрией. Классическими фигурами с такой симметрией будут круг, прямоугольник, ромб, квадрат, причём они будут иметь по несколько осей симметрии. Под осевой симметрией так же в естественных науках принимают вращательную или радиальную симметрию - форма симметрии, при которой фигура совпадает сама с собой при вращении объекта вокруг определённой прямой. Центром симметрии объекта называют прямую, на которой пересекаются все оси двусторонней симметрии. Радиальной симметрией обладают такие геометрические объекты, как круг, шар, цилиндр или конус.

Центральная симметрия: две точки A и A 1 называются симметричными относительно точки O, если O – середина отрезка AA 1 . Фигура называется симметричной относительно точки O, если для каждой точки фигуры симметричная ей точка относительно точки O также принадлежит этой фигуре. Точка O называется центром симметрии фигуры. Это означает, что фигура обладает центральной симметрией.

Примерами фигур, обладающих этой симметрией, будут окружность и параллелограмм. Центр симметрии окружности является центр этой окружности, а центром параллелограмма – точка пересечения его диагоналей. Самый простой пример, который я могу привести - растения, почти в любых растениях можно найти часть, обладающую центральной или осевой симметрией, но при этом сам цветок будет обладать центральной симметрии только в случае чётного количества лепестков.

Зеркальной симметрией называют такое отображение пространства на себя, при котором любая точка M переходит в симметричную ей относительно этой плоскости α точку M 1. Когда мы смотрим в зеркало, мы наблюдаем в нём своё отражение – это пример «зеркальной» симметрии. Зеркальное отражение - это пример так называемого «ортогонального» преобразования, изменяющего ориентацию. Я думаю, отражение в реке также будет хорошим примером зеркальной симметрии. Эту симметрию так же называют в других науках билатеральной и двусторонней. Она особенно заметна в архитектуре, а так же в животном мире. Человек так же обладает ей и если мысленно провести линию по центру, то правая часть будет соответствовать левой.

Симметрия в искусстве.

Мы восхищаемся красотой окружающего мира и не задумываемся, что лежит в основе этой красоты. Наука и искусство – два основных начала в человеческой культуре, две дополняющие друг друга формы высшей творческой деятельности человека. Симметрия в искусстве играет огромную роль и почти не в одном архитектурном сооружении не обходится без неё.

Прекрасные образцы симметрии демонстрируют произведения архитектуры. В ней тесно связанны и строго уравновешены наука, техника, искусство. Люди всегда стремились достичь гармонии в архитектуре. Благодаря этому стремлению на свет появлялись всё новые изобретения, конструкции и стили. Человеческое творчество во всех своих проявлениях тяготеет к симметрии. На этот счёт хорошо высказался известный французский архитектор Ле Корбюзье, в своей книге «Архитектура XX века» он писал: «Человеку необходим порядок: без него все его действия теряют согласованность, логическую взаимность. Чем совершеннее порядок, тем спокойнее и увереннее чувствует себя человек. Архитектурные сооружения, созданные человеком, в большей своей части симметричны. Они приятны для глаза, их люди считают красивыми. Симметрия воспринимается человеком как проявление закономерности, а значит, внутреннего порядка. Внешне этот внутренний порядок воспринимается как красота. Зеркальной симметрии подчинены постройки Древнего Египта, амфитеатры, триумфальные арки римлян, дворцы и церкви Ренессанса, равно как и многочисленные сооружения современной архитектуры. Симметрия сооружения связывается с организацией его функций. Проекция плоскости симметрии - ось здания - определяет обычно размещение главного входа и начало основных потоков движения. Школа, в которой я учусь, так же обладает этим типом симметрии.

В искусстве существует математическая теория живописи. Это теория перспективы. Перспектива - это учение о том, как передать на плоском листе бумаги ощущение глубины пространства, то есть передать окружающим мир таким, как мы его видим. Она основано на соблюдении нескольких законов. Законы перспективы заключаются в том, что чем дальше от нас находится предмет, тем он нам кажется меньше, совсем нечетким, на нем меньше деталей, основание его выше. Симметричная композиция легко воспринимается зрителем, сразу привлекая внимание к центру картины, в котором и находится то главное, относительно которого разворачивается действие. Живописцы эпохи Возрождения часто строили свои композиции по законам симметрии. Такое построение позволяет достигнуть впечатления покоя, величественности, особой торжественности и значимости событий. Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому.

В музыке и литературе так же наблюдается симметрия и определённые пропорции. Например, во второй половине XIX века анализируя произведения Баха, Э.К. Розенов пришёл к выводу, что в них «господствуют закон золотого сечения и закон симметрии». В его исследовании золотое сечение рассматривается как условие соразмерности музыкального произведения, при этом золотое сечение должно решать три задачи: 1) Устанавливать соразмерное отношение между целым и его частями; 2) быть особым местом удовлетворения подготовленного ожидания по отношению к целому и его частям; 3) направлять внимание слушателя на те места музыкального произведения, которым автор придаёт наиболее большее значение в связи с основной идеей произведения. В работе М.А. Марутаева золотое сечение, на ряду с так называемыми качественной и нарушенной симметрией, расценивается как предпосылка гармонии к музыке. Работы, посвящённые исследованию золотого сечения в музыке, играют важную роль в постижении специфики музыкального искусства. Самый распространённый вид симметрии в музыке - это трансляционный вид. В этом случае музыкальная фраза, мелодия или более крупные отрывки музыкального произведения повторяются, оставаясь неизменными. Все песни, в которых припев повторяется несколько раз, будут иметь этот вид симметрии.

Пропорция и симметрия объекта всегда необходима нашему зрительному восприятию, для того чтобы мы могли считать этот объект красивым. Баланс и пропорция частей, относительно целого, обязательны для симметрии. Смотреть на симметричные изображения приятней, нежели на асимметричные. Трудно найти человека, не любовавшегося орнаментами. В них можно обнаружить затейливое сочетание разных типов симметрии.

Симметрия в технике.

Технические объекты – самолёты, автомашины, ракеты, молотки, гайки – практически все они от самых малых технических приборов до громадных ракет обладают той или иной симметрией и это не случайно. В технике красота, соразмерность механизмов часто бывает связана с их надежностью, устойчивостью в работе. Симметричная форма дирижабля, самолета, подводной лодки, автомобиля и т.д. обеспечивает хорошую обтекаемость воздухом или водой, а значит, и минимальное сопротивление движению. Любой станок, машина, прибор, механизм, узел должны компоноваться вокруг установленной симметрии. На заре развития авиации наши знаменитые учёные Н. Е. Жуковский и С. А. Чаплыгин исследовали полёт птиц, чтобы сделать выводы относительно лучшей формы крыла и условий его полёта. Большую роль в этом сыграла, конечно, симметрия. Даже современные боевые истребители, такие как Су-27, МиГ-29 и Т-50 в основе своей спроектированы по законам симметрии.



Симметрия в разных науках.

Все представители животного царства – млекопитающие, птицы, рыбы, насекомые, черви, паукообразные и др. в своих внешних формах и строении своего скелета демонстрируют нам зеркальную симметрию, т. е. равенство правого и левого. Рассматривая любое из этих живых существ, мы можем мысленно провести через него вертикальную плоскость, относительно которой то, что расположено справа будет зеркальным отражением того, что расположено слева, и наоборот. Равенство это выполняется не с точностью до долей миллиметра, может быть, и не до миллиметра, но, тем не менее, с некоторой степенью приближения, зеркальная симметрия налицо. Зрительно мы воспринимаем живые организмы как симметричные. Под отражениями понимают любые зеркальные отражения - в точке, линии, плоскости. Воображаемая плоскость, которая делит фигуры на две зеркальные половины, называется плоскостью симметрии. Бабочка, лист растения – самые простые примеры фигур обладающих лишь одной плоскостью симметрии, делящей ее на две зеркально равные части. Поэтому данный вид симметрии в биологии называется двусторонней или билатеральной. Полагают, что такая симметрия связана с различиями движений организмов вверх - вниз, вперед - назад, тогда как их движения направо - налево совершенно одинаковы. Нарушение билатеральной симметрии неизбежно приводит к торможению движения одной из сторон и изменению поступательного движения. Поэтому не случайно активно подвижные животные двусторонне симметричны. Но такой вид симметрии встречается и у неподвижных организмов и их органов. Она возникает в этом случае вследствие неодинаковости условий, в которых находятся прикрепленная и свободная стороны. По-видимому, так объясняется билатеральность некоторых листьев, цветков и лучей коралловых полипов. Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии. Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Поворотная симметрия – это такая симметрия, при котором объект совмещается сам с собой при повороте на 360°/n. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы. Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка - своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой". Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко. Дальнейшие наши поиски были сосредоточены на центральной симметрии. Она наиболее характерна для цветов и плодов растений. Центральная симметрия характерна для различных плодов, но мы остановились на ягодах: голубика, черника, вишня, клюква. Рассмотрим разрез любой из этих ягод. В разрезе она представляет собой окружность, а окружность, как нам известно, имеет центр симметрии. Центральную симметрию можно наблюдать на изображении следующих цветов: цветок одуванчика, цветок мать-и-мачехи, цветок кувшинки, сердцевина ромашки, а в некоторых случаях центральной симметрией обладает и изображение всего цветка ромашки.

Симметрия – одно из фундаментальных понятий в современной физике, играющее важнейшую роль в формулировке современных физических теорий. Симметрии, учитываемые в физике, довольно разнообразны, некоторые из них в современной физике считаются точными, другие – лишь приближёнными. В 1918 году немецкий математик Нётер доказала теорему, согласно которой каждой непрерывной симметрии физической системы соответствует некоторый закон сохранения. Наличие этой теоремы позволяет проводить анализ физической системы на основе имеющихся данных о симметрии, которой эта система обладает. Из неё, например, следует, что симметричность уравнений движения тела с течением времени приводит к закону сохранения энергии; симметричность относительно сдвигов в пространстве - к закону сохранения импульса; симметричность относительно вращений - к закону сохранения момента импульса. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях, которым может быть подвергнута система, то говорят, что эти законы обладают симметрией относительно данных преобразований.


Симметрия в физике

Преобразования

Соответствующая
инвариантность


Соответствующий закон
сохранения


↕ Трансляция времени

Однородность
времени

…энергии

⊠ С, Р, СР и Т - симметрии

Изотропность
времени

…чётности

↔Трансляции пространства

Однородность
пространства

…импульса

↺ Вращения пространства

Изотропность
пространства

…момента
импульса

⇆ Группа Лоренца

Относительность
Лоренц-инвариантность

…4-импульса

~ Калибровочное преобразование

Калибровочная инвариантность

…заряда

Суперсимметрия - гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот. По состоянию на 2015 год суперсимметрия является физической гипотезой, не подтверждённой экспериментально. Совершенно точно установлено, что наш мир не является суперсимметричным в смысле точной симметрии, так как в любой суперсимметричной модели фермионы и бозоны, связанные суперсимметричным преобразованием, должны обладать одинаковыми массой, зарядом и другими квантовыми числами. Данное требование не выполняется для известных в природе частиц. Независимо от существования суперсимметрии в природе, математический аппарат суперсимметричных теорий оказывается полезным в самых различных областях физики. В частности, суперсимметричная квантовая механика позволяет находить точные решения весьма нетривиальных уравнений Шрёдингера. Суперсимметрия оказывается полезной в некоторых задачах статистической физики.

Симметрия в химии проявляется в геометрической конфигурации молекул. Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. Обычный способ изображения молекул в органической химии - это структурные формулы. В 1810 году Д.Дальтон, желая показать своим слушателям как атомы, комбинируясь, образуют химические соединения, построил деревянные модели шаров и стержней. Эти модели оказались превосходным наглядным пособием. Молекула воды и водорода имеет плоскость симметрии. Ничто не изменится, если поменять местами парные атомы в молекуле; такой обмен эквивалентен операции зеркального отражения.

В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка - это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают поворотной симметрией и, кроме того, зеркальной симметрией. Кристалл - это твердое тело, имеющее естественную форму многогранника. Соль, лед, песок и т.д. состоят из кристаллов. Прежде всего, Ромэ-Делиль подчёркивал правильную геометрическую форму кристаллов исходя из закона постоянства углов между их гранями. Он писал: «К разряду кристаллов стали относить все тела минерального царства, для которых находили фигуру геометрического многогранника…» Правильная форма кристаллов возникает по двум причинам. Во-первых, кристаллы состоят из элементарных частичек - молекул, которые сами имеют правильную форму. Во-вторых, «такие молекулы имеют замечательное свойство соединяться между собой в симметричном порядке». Почему же так красивы и привлекательны кристаллы? Их физические и химические свойства определяются их геометрическим строением.

Вывод.

Существует множество видов симметрии, как в растительном, так и в животном мире, но при всём многообразии живых организмов, принцип симметрии действует всегда, и этот факт ещё раз подчеркивает гармоничность нашего мира. Человеческое представление о красивом формируется под влиянием того, что человек видит в живой природе. В своих творениях, очень далёких друг от друга, она может использовать одни и те же принципы. И человек в живописи, скульптуре, архитектуре, музыке применяет эти же принципы. Основополагающими принципами красоты при этом являются пропорции и симметрия. Без симметрии наш мир выглядел бы совсем по-другому. Ведь это именно на симметрии основаны многие законы. Почти во всём, что нас окружает, есть та или иная симметрия. О ней можно говорить бесконечно. Симметрия, проявляясь в самых различных объектах природного мира, несомненно, отражает наиболее общие ее свойства. Поэтому изучение симметрии и сопоставление с результатами является удобным и надежным инструментом познания гармонии мира.

Математика выявляет порядок, симметрию и определённость, а это – важнейшие виды прекрасного.

Аристотель

Используемая литература.


  • ru.wikipedia.org

  • www.allbest.ru

  • www.900igr.net

  • Тарасов Л. В. Этот удивительный симметричный мир – М.: Просвещение, 1982.

  • Урманцев Ю.А. Симметрия в природе и природа симметрии – М.: Мысль, 1974.

  • Ожегов С.И. Словарь русского языка – М.: Рус. Яз., 1984.

  • Л.С. Атанасян Геометрия, 7-9 – М.: Просвещение, 2010.

  • Л.С. Атанасян Геометрия, 10-11 – М.: Просвещение, 2013.

  • Вейль Г. Симметрия. Перевод с английского Б.В. Бирюкова и Ю.А. Данилова – М.: Издательство «Наука», 1968.