КОНФИГУРАЦИЯ И КОНФОРМАЦИЯ БЕЛКОВОЙ МОЛЕКУЛЫ

Электронная микроскопия

Может быть использована для выяснения структуры белковых молекул с большой молекулярной массой – от 500.000 до 1.000.000 Да (дальтон). Дальтон (Да) и килодальтон (кДа) – единицы измерения массы белков. 1кДа=10 3 Да. 1 дальтон равен 1/16 массы атома кислорода (кислородная единица массы).

Из всего сказанного можно заключить, что пространственная организация белков очень сложна. В химии существует понятие - пространственная КОНФИГУРАЦИЯ - жестко закрепленное ковалентными связями пространственное взаимное расположение частей молекулы (например: принадлежность к L-ряду стереоизомеров или к D-ряду).

Для белков также используется понятие КОНФОРМАЦИЯ белковой молекулы - определенное, но не застывшее, не неизменное взаимное расположение частей молекулы . Так как конформация белковой молекулы формируется при участии слабых типов связей, то она является подвижной (способной к изменениям), и белок может изменять свою структуру. В зависимости от условий внешней среды молекула может существовать в разных конформационных состояниях, которые легко переходят друг в друга. Энергетически выгодными для реальных условий являются только одно или несколько конформационных состояний, между которыми существует равновесие. Переходы из одного конформационного состояния в другое обеспечивают функционирование белковой молекулы. Это обратимые конформационные изменения (встречаются в организме, например, при проведении нервного импульса, при переносе кислорода гемоглобином). При изменении конформации часть слабых связей разрушается, и образуются новые связи слабого типа.

Взаимодействие белка с каким-нибудь веществом иногда приводит к связыванию молекулы этого вещества молекулой белка. Этот явление известно как «сорбция» (связывание) . Обратный же процесс - освобождение другой молекулы от белковой называется «десорбция» .

Если для какой-нибудь пары молекул процесс сорбции преобладает над десорбцией, то это уже специфическая сорбция, а вещество, которое сорбируется, называется «лиганд» .

Виды лигандов:

1) Лиганд белка-фермента – субстрат.

2) Лиганд траспортного белка – транспортируемое вещество.

3) Лиганд антитела (иммуноглобулина) – антиген.

4) Лиганд рецептора гормона или нейромедиатора – гормон или нейромедиатор.

Белок может изменять свою конформацию не только при взаимодействии с лигандом, но и в результате любого химического взаимодействия. Примером такого взаимодействия может служить присоединение остатка фосфорной кислоты.

В природных условиях белки имеют несколько термодинамически выгодных конформационных состояний. Это нативные состояния (природные). Natura (лат.) – природа.

  • 1. Методы разрушения тканей и экстракции белков
  • 2. Методы очистки белков
  • 3. Очистка белков от низкомолекулярных примесей
  • 11.Конформационная лабильность белков. Денатурация, признаки и факторы ее вызывающие. Защита от денатурации специализированными белками теплового шока (шаперонами).
  • 12. Принципы классификации белков. Классификация по составу и биологическим функциям, примеры представителей отдельных классов.
  • 13. Иммуноглобулины, классы иммуноглобулинов, особенности строения и функционирования.
  • 14. Ферменты, определение. Особенности ферментативного катализа. Специфичность действия ферментов, виды. Классификация и номенклатура ферментов, примеры.
  • 1. Оксидоредукпшзы
  • 2.Трансферты
  • V. Механизм действия ферментов
  • 1. Формирование фермент-субстратного комплекса
  • 3. Роль активного центра в ферментативном катализе
  • 1. Кислотно-основной катализ
  • 2. Ковалентный катализ
  • 16. Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от температуры, рН среды, концентрации фермента и субстрата. Уравнение Михаэлиса-Ментен, Кm.
  • 17. Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр и в2 на примере трансаминаз и дегидрогеназ.
  • 1. Роль металлов в присоединении субстрата в активном центре фермента
  • 2. Роль металлов в стабилизации третичной и четвертичной структуры фермента
  • 3. Роль металлов в ферментативном катализе
  • 4. Роль металлов в регуляции активности ферментов
  • 1. Механизм "пинг-понг"
  • 2. Последовательный механизм
  • 18. Ингибирование ферментов: обратимое и необратимое; конкурентное и неконкурентное. Лекарственные препараты как ингибиторы ферментов.
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 1. Специфические и неспецифические ингибиторы
  • 2. Необратимые ингибиторы ферментов как лекарственные препараты
  • 20. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования.
  • 21. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции каталитической активности ферментов.
  • 22. Изоферменты, их происхождение, биологическое значение, привести примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней.
  • 23. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 24. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротацидурия.
  • 25. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Азотистые основания, входящие в структуру нуклеиновых кислот – пуриновые и пиримидиновые. Нуклеотиды, содержащие рибозу и дезоксирибозу. Структура. Номенклатура.
  • 28. Первичная структура нуклеиновых кислот. Днк и рнк–черты сходства и различия состава, локализации в клетке, функции.
  • 29. Вторичная структура днк (модель Уотсона и Крика). Связи, стабилизирующие вторичную структуру днк. Комплементарность. Правило Чаргаффа. Полярность. Антипараллельность.
  • 30. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.
  • 32. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 33. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 34. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 35. Транскрипция Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц (α2ββ′δ). Инициация процесса. Элонгация, терминация транскрипции.
  • 36. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 37. Регуляция транскрипции у прокариот. Теория оперона, регуляция по типу индукции и репрессии (примеры).
  • 1. Теория оперона
  • 2. Индукция синтеза белков. Lac-оперон
  • 3. Репрессия синтеза белков. Триптофановый и гистидиновый опероны
  • 39. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 41. Фолдинг белков. Ферменты. Роль шаперонов в фолдинге белка. Фолдинг белковой молекулы с помощью шаперониновой системы. Болезни, связанные с нарушением фолдинга белка – прионовые болезни.
  • 42. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 43. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 44. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 45. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 1. Образование и роль соляной кислоты
  • 2.Механизм активации пепсина
  • 3.Возрастные особенности переваривания белков в желудке
  • 1. Активация панкреатических ферментов
  • 2. Специфичность действия протеаз
  • 47. Витамины. Классификация, номенклатура. Провитамины. Гипо-, гипер- и авитаминозы, причины возникновения. Витаминзависимые и витаминрезистентные состояния.
  • 48. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 3. Жидкостностъ мембран
  • 1. Структура и свойства липидов мембран
  • 51. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • Мембранные рецепторы
  • 3.Эндергонические и экзергонические реакции
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Строение атф-синтазы и синтез атф
  • 3.Коэффициент окислительного фосфорилирования
  • 4.Дыхательный контроль
  • 56. Образование активных форм кислорода (синглетный кислород, пероксид водо-рода, гидроксильный радикал, пероксинитрил). Место образования, схемы реакций, их физиологическая роль.
  • 57. Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1) Инициация: образование свободного радикала (l )
  • 2) Развитие цепи:
  • 3) Разрушение структуры липидов
  • 1. Строение пируватдегидрогеназного комплекса
  • 2. Окислительное декарбоксилирование пирувата
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 59. Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 1. Последовательность реакций цитратного цикла
  • 60. Цикл лимонной кислоты, схема процесса. Связь цикла с целью переноса электронов и протонов. Регуляция цикла лимонной кислоты. Анаболические и анаплеротические функции цитратного цикла.
  • 61. Основные углеводы животных, биологическая роль. Углеводы пищи, переваривание углеводов. Всасывание продуктов переваривания.
  • Методы определение глюкозы в крови
  • 63. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Физиологическое значение аэробного гликолиза. Использование глюкозы для синтеза жиров.
  • 1. Этапы аэробного гликолиза
  • 64. Анаэробный гликолиз. Реакция гликолитической оксидоредукции; субстратное фосфорилирование. Распространение и физиологическое значение анаэробного распада глюкозы.
  • 1. Реакции анаэробного гликолиза
  • 66. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена.
  • 68. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов. Гликогенозы и агликогенозы.
  • 2. Агликогенозы
  • 69. Липиды. Общая характеристика. Биологическая роль. Классификация липидов.Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы..
  • 72. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метаболизма жира.
  • 73. Распад жирных кислот в клетке. Активация и перенос жирных кислот в митохондрии. Β-окисление жирных кислот, энергетический эффект.
  • 74. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 2. Регуляция синтеза жирных кислот
  • 76. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • Фонд холестерола в организме, пути его использования и выведения.
  • 1. Механизм реакции
  • 2. Органоспецифичные аминотрансферазы ант и act
  • 3. Биологическое значение трансаминирования
  • 4. Диагностическое значение определения аминотрансфераз в клинической практике
  • 1. Окислительное дезаминирование
  • 81. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 3. Неокислительное дезамитровате
  • Высокая специфичность связывания белка с лигандом обеспечивается комплементарностью структуры активного центра белка структуре лиганда

    Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными.

    1. Характеристика активного центра

    Активный центр белка - относительно изолированный от окружающей белок среды участок, сформированный аминокислотными остатками. В этом участке каждый остаток благодаря своему индивидуальному размеру и функциональным группам формирует "рельеф" активного центра.

    Объединение таких аминокислот в единый функциональный комплекс изменяет реакционную способность их радикалов, подобно тому, как меняется звучание музыкального инструмента в ансамбле. Поэтому аминокислотные остатки, входящие в состав активного центра, часто называют "ансамблем" аминокислот.

    Уникальные свойства активного центра зависят не только от химических свойств формирующих его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

    Часто активный центр формируется таким образом, что доступ воды к функциональным группам его радикалов ограничен, т.е. создаются условия для связывания лиганда с радикалами аминокислот.

    В некоторых случаях лиганд присоединяется только к одному из атомов, обладающему определённой реакционной способностью, например присоединение О 2 к железу миоглобина или гемоглобина. Однако свойства данного атома избирательно взаимодействовать с О 2 определяются свойствами радикалов, окружающих атом железа в составе тема. Гем содержится и в других белках, таких как цитохромы. Однако функция атома железа в цитохромах иная, он служит посредником для передачи электронов от одного вещества другому, при этом железо становится то двух-, то трёхвалентным.

    Основное свойство белков, лежащее в основе их функций, - избирательность присоединения к определённым участкам белковой молекулы специфических лигандов.

    2. Многообразие лигандов

      Лигандами могут быть неорганические (часто ионы металлов) и органические вещества, низкомолекулярные и высокомолекулярные вещества;

      существуют лиганды, которые изменяют свою химическую структуру при присоединении к активному центру белка (изменения субстрата в активном центре фермента);

      существуют лиганды, присоединяющиеся к белку только в момент функционирования (например, О 2 , транспортируемый гемоглобином), и лиганды, постоянно связанные с белком, выполняющие вспомогательную роль при функционировании белков (например, железо, входящее в состав гемоглобина).

    В тех случаях, когда аминокислотные остатки, формирующие активный центр, не могут обеспечить функционирование данного белка, к определённым участкам активного центра могут присоединяться небелковые молекулы. Так, в активном центре многих ферментов присутствует ион металла (кофактор) или органическая небелковая молекула (кофермент). Небелковую часть, прочно связанную с активным центром белка и необходимую для его функционирования, называют "простатическая группа". Миоглобин, гемоглобин и цитохромы имеют в активном центре простетическую группу - гем, содержащий железо.

    Соединение протомеров в олигомерном белке - пример взаимодействия высокомолекулярных лигандов. Каждый протомер, соединённый с другими протомерами, служит для них лигандом, так же как они для него.

    Иногда присоединение какого-либо лиганда изменяет конформацию белка, в результате чего формируется центр связывания с другими лигандами. Например, белок кальмодулин после связывания с четырьмя ионами Са 2+ в специфических участках приобретает способность взаимодействовать с некоторыми ферментами, меняя их активность.

    8.Четвертичная структура белков. Особенности строенияи функционирования олигомерных белков на примере гемоглобина. Кооперативные изменения конформации протомеров. Возможность регуляции биологической функции олигомерных белков аллостерическими лигандами.

    Под четвертичной структурой подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования. Многие функциональные белки состоят из нескольких полипептидных цепей, соединенных не ковалентными связями, а неко-валентными (аналогичными тем, которые обеспечивают стабильность третичной структуры). Каждая отдельно взятая полипептидная цепь, получившая название протомера, мономера или субъединицы, чаще всего не обладает биологической активностью. Эту способность белок приобретает при определенном способе пространственного объединения входящих в его состав протомеров, т.е. возникает новое качество, не свойственное мономерному белку. Образовавшуюся молекулу принято называть олигомером (или мультимером). Олигомерные белки чаще построены из четного числа протомеров (от 2 до 4, реже от 6 до 8) с одинаковыми или разными молекулярными массами – от нескольких тысяч до сотен тысяч. В частности, молекула гемоглобина состоит из двух одинаковых α- и двух β-полипептидных цепей, т.е. представляет собой тетрамер.

    Кооперативные изменения конформации протомеров.

    Изменение конформации, а следовательно и функциональных свойств всех протомеров олигомерного белка при присоединение лиганда только к одному из них носит название-кооперативные изменения конформации протомеров.

    Аллостерическая регуляция . Фермент изменяет активность с помощью нековалентно связанного с ним эффектора. Связывание происходит в участке, пространственно удаленном от активного (каталитического) центра. Это связывание вызывает конформационные изменения в молекуле белка, приводящие к изменению определенной геометрии каталитического центра. Активность может увеличиться - это активация фермента, или уменьшиться - это ингибирование «Сообщение» о присоединении аллостерического активатора передается посредством конформационных изменений каталитической субъединице, которая становится комплементарной субстрату, и фермент «включается». При удалении активатора фермент вновь переходит в неактивную форму и «выключается». Аллостерическая регуляция является основным способом регуляции метаболических путей.

  • · 1 В неорганической химии

    o 1.1 Номенклатура лигандов

    o 1.2 Характеристики лигандов

    § 1.2.1 Электронное строение

    § 1.2.2 Дентатность

    § 1.2.3 Способы координации

    · 2 Примечания

    В неорганической химии

    Чаще всего такое связывание происходит с образованием так называемой «координационной» донорно-акцепторной связи, где лиганды выступают в ролиоснования Льюиса, то есть являются донорами электронной пары. При присоединении лигандов к центральному атому химические свойства комплексообразователя и самих лигандов часто претерпевают значительные изменения.

    Номенклатура лигандов [править | править вики-текст]

    1. первым в названии соединения в именительном падеже называется анион, а затем в родительном - катион

    2. в названии комплексного иона сначала перечисляются лиганды в алфавитном порядке, а затем центральный атом

    3. центральный атом в нейтральных катионных комплексах называются русским названием, а в анионах корнем латинского названия с суффиксом «ат». После названия центрального атома указывается степень окисления.

    4. число лигандов, присоединенных к центральному атому, указывается приставками «моно», «ди», «три», «тетра», «пента», и т. д.

    Характеристики лигандов [править | править вики-текст]

    Электронное строение [править | править вики-текст]

    Собственно, важнейшая характеристика лиганда, позволяющая оценить и спрогнозировать его способности к комплексообразованию и саморазрушению D-орбитали - разрушения соединения в целом. В первом приближении включает в себя количество электронных пар, которые лиганд способен выделить на создание координационных связей и электроотрицательность донирующего атома или функциональной группы.

    Дентатность [править | править вики-текст]

    Число занимаемых лигандом координационных мест центрального атома (или атомов), называется дентатностью (отлат. dens, dent- - зуб ). Лиганды, занимающие одно координационное место, называются моно дентатными (например, N H 3), два - би дентатными (оксалат-анион [O -C(=O)-C(=O)-O ] 2−). Лиганды, способные занять большее количество мест, обычно обозначают как поли дентатные. Например, этилендиаминтетрауксусная кислота (EDTA), способная занять шесть координационных мест.

    Кроме дентатности, существует характеристика, отражающая количество атомов лиганда, связанных с одним координационным местом центрального атома. В английской литературе обозначается словом hapticity и имеет номенклатурное обозначение η с соответствующим надстрочным индексом. Хотя устоявшегося термина в русском языке она, по-видимому, не имеет, в некоторых источниках можно встретить кальку «гаптность» . Как пример, можно привести циклопентадиенильный лиганд в металлоцентровых комплексах, занимающий одно координационное место (то есть, являющийся монодентатным) и связанный через все пять атомов углерода: η 5 - − .

    Способы координации [править | править вики-текст]

    Хелатный комплексEDTA 4−

    Лиганды с дентатностью больше двух способны образовывать хелатные комплексы (греч. χηλή - клешня) - комплексы, где центральный атом включен в один или более циклов с молекулой лиганда. Такие лиганды называются хелатирующими . Как пример можно привести комплексы тетрааниона той же EDTA, обратив внимание, что несколько из четырёх связей M-O в нём могут формально являться ионными .

    При образовани хелатных комплексов часто наблюдается хелатный эффект - большая их стабильность по сравнению с аналогичными комплексами не-хелатирующих лигандов. Он достигается за счет большего экранирования центрального атома от замещающих воздействий и энтропийного эффекта. Например, константа диссоциации аммиачного комплекса кадмия 2+ почти в 1500 раз меньше, чем комплекса с этилендиамином 2+ . Причина этого заключается в том, что при взаимодействии гидратированного иона кадмия(II) с этилендиамином две молекулы лиганда вытесняют четыре молекулы воды. При этом число свободных частиц в системе значительно возрастает, и энтропия системы возрастает (а внутренняя упорядоченность комплекса соответствено растёт). То есть причина хелатного эффекта - увеличение энтропии системы при замещении монодентатных лигандов полидентатнымии и, как следствие, снижение энергии Гиббса.

    Порфириновый цикл

    Среди хелатирующих лигандов можно выделить класс макроциклических лигандов - молекул с достаточным для помещения атома комплексообразователя размером внутрициклического пространства. Примером таких соединений могут служитьпорфириновые основания - основы важнейших биохимических комплексов, таких, как гемоглобин, хлорофилл ибактериохлорофилл. Также в качестве макроциклических лигандов могут выступать краун-эфиры, каликсарены и др.

    Лиганды также могут являться мостиковыми, образуя связи между различными центральными атомами в би- или полиядерных комплексах. Мостиковые лиганды обозначаются греческой буквой μ (мю ).

    ЛИГАНДЫ

    АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ

    ЛИГАНДЫ (от лат. ligo - связываю), нейтральные молекулы, ионы или радикалы, связанные с центр. атомомкомплексного соединения. Ими м. б. ионы (Н - , Наl - , NO 3 - , NCS - и др.), неорг. молекулы (Н 2 , С n , N 2 , Р n , О 2 , S n , СО, СО 2 , NH 3 , NO, SO 2 , NO 2 , COS и др.), орг. соед., содержащие элементы главных подгрупп V, VI, VII гр. периодич. системы или p-донорную ф-цию. Большая группа лигандов-биологически важные соед. (аминокислоты, пептиды,белки, пурины, порфирины, коррины, макролиды) и их синтетич. аналоги (краун-эфиры, криптанды), а такжеполимеры с донорными атомами и хелатообразующими группировками. Лиганды могут быть связаны с центр.атомом s-, p- и d-двухцентровыми или многоцентровыми связями. В случае образования двухцентровых связей в лигандах можно выделить донорные центры (обычно атомы N, О, S, Cl или кратные связи). Многоцентровое связывание осуществляется за счет p-системы ароматич. лигандов (бензол, циклопентадиенид-анион) или гетероароматич. лигандов (пиррол, тиофен, метилпиридины). Важнейшая количеств. характеристика донорно-акцепторной способности лигандов - дентатность, определяемая числом донорных центров лигандов, участвующих в координации. По этому признаку лиганды делятся на моно-, ди-, ... полидентатные. Координац. число комплексообразователя для монодентатных лигандов совпадает с их кол-вом, для прочих равно произведению числа лигандов на их дентатность. Природа лигандов определяет типы координац. соед. (аквакомплексы,амминокомплексы, ацидокомплексы, мол. аддукты, хелаты, p-комплексы и др.); от нее зависят св-ва, строение и реакц. способность комплексных соед. и возможность их практич. применения.

    Лиганд - это обязательный компонент сложных белков

    У сложных белков, кроме белковой цепи, имеется дополнительная небелковая группа - лиганд (лат. ligo - связываю), то есть молекула, связанная с белком. В случае если лиганд несет структурную и/или функциональную нагрузку, он называется простетической группой .

    В роли лиганда могут выступать любые молекулы:

    · молекулы, выполняющие в белке структурную функцию – липиды, углеводы, нуклеиновые кислоты, минеральные элементы, какие-либо другие органические соединения: гем в гемоглобине, углеводы в гликопротеинах, ДНК и РНК в нуклеопротеинах, медь в церулоплазмине,

    · переносимые белками молекулы : железо в трансферрине, гемоглобин в гаптоглобине, гем в гемопексине,

    · субстраты для ферментов – любые молекулы и даже другие белки.

    Узнавание лиганда обеспечивается:

    · комплементарностью структуры центра связывания белка структуре лиганда, иначе говоря, пространственным и химическим соответствием белка и лиганда. Они подходят друг к другу как ключ к замку, например, соответствие фермента и субстрата,

    · иногда узнавание может зависеть от реакционной способности атома, к которому присоединяется лиганд. Например, связывание кислорода железом гемоглобина, или жирной кислоты с альбумином.

    Функции лиганда в составе сложного белка разнообразны:

    · изменяет свойства белков (заряд, растворимость, термолабильность), например, фосфорная кислота в фосфопротеинах или остатки моносахаридов в гликопротеинах,

    · защищает белок от протеолиза вне и внутри клетки, например углеводная часть вгликопротеинах,

    · в виде лиганда обеспечивается транспорт нерастворимых в воде соединений, например, перенос жиров липопротеинами,

    · придает биологическую активность и определяет функцию белка, например, нуклеиновая кислота в нуклеопротеинах, гем в гемоглобине, углевод в рецепторных белках,

    · влияет на проникновение через мембраны , внутриклеточную миграцию, сортировку и секрецию белков. Это выполняет, как правило, углеводный остаток.

    Ppt%5C34928-slozhnye_belki_ch1_1.jpg" alt=">Активный центр белка и его взаимодействие с лигандом. В процессе формирования третичной структуры"> Активный центр белка и его взаимодействие с лигандом. В процессе формирования третичной структуры на поверхности функционально активного белка, обычно в углублении, образуется участок, сформированный радикалами аминокислот, далеко стоящими друг от друга в первичной структуре. Этот участок, имеющий уникальное строение для данного белка и способный специфично взаимодействовать с определенной молекулой или группой похожих молекул, называется центром связывания белка с лигандом или активным центром. Лигандами называются молекулы, взаимодействующие с белками.

    Ppt%5C34928-slozhnye_belki_ch1_2.jpg" alt=">Лигандом может быть как низкомолекулярное, так и высокомолекулярное (макромолекула) вещество, в том числе и"> Лигандом может быть как низкомолекулярное, так и высокомолекулярное (макромолекула) вещество, в том числе и другой белок. Лигандами являются субстраты ферментов, кофакторы, ингибиторы и активаторы ферментов, протомеры в олигомерном белке и т.д.

    Ppt%5C34928-slozhnye_belki_ch1_3.jpg" alt=">Высокая специфичность взаимодействия белка с лигандом обеспечивается комплементарностью структуры активного центра структуре лиганда.">

    Ppt%5C34928-slozhnye_belki_ch1_4.jpg" alt=">Комплементарность - это пространственное и химическое соответствие взаимодействующих поверхностей. Активный центр должен не только"> Комплементарность - это пространственное и химическое соответствие взаимодействующих поверхностей. Активный центр должен не только пространственно соответствовать входящему в него лиганду, но и между функциональными группами радикалов, входящих в активный центр, и лигандом должны образоваться связи чаще всего нековалентные (ионные, водородные, а также гидрофобные взаимодействия), которые удерживают лиганд в активном центре.

    Ppt%5C34928-slozhnye_belki_ch1_5.jpg" alt=">Комплементарное взаимодействие белка с лигандом">

    Ppt%5C34928-slozhnye_belki_ch1_6.jpg" alt=">">

    Ppt%5C34928-slozhnye_belki_ch1_7.jpg" alt=">">

    Ppt%5C34928-slozhnye_belki_ch1_8.jpg" alt=">КЛАССИФИКАЦИЯ БЕЛКОВ 1. Простые белки состоят только из аминокислот. 2. Сложные белки (холопротеины)"> КЛАССИФИКАЦИЯ БЕЛКОВ 1. Простые белки состоят только из аминокислот. 2. Сложные белки (холопротеины) содержат белковую часть (апопротеин) и небелковую (простетическую) группу.

    Ppt%5C34928-slozhnye_belki_ch1_9.jpg" alt=">В качестве простетической группы могут выступать различные органические (липиды, углеводы) и неорганические (металлы) вещества."> В качестве простетической группы могут выступать различные органические (липиды, углеводы) и неорганические (металлы) вещества. Связь между простетической группой и апопротеином может быть как ковалентная, так и нековалентная. Простетическую группу порой можно рассматривать в качестве лиганда. Наличие небелковой части обеспечивает выполнение белком его функции. При утрате простетической группы холопротеин теряет свою активность.

    Ppt%5C34928-slozhnye_belki_ch1_10.jpg" alt=">Сложные белки - хромопротеины - нуклеопротеины - липопротеины - фосфопротеины - гликопротеины - металлопротеины">

    Ppt%5C34928-slozhnye_belki_ch1_11.jpg" alt=">Металлопротеинам можно отнести холоферменты, содержащие негемовые координационно связанные ионы металлов. Среди металлопротеинов есть белки,"> Металлопротеинам можно отнести холоферменты, содержащие негемовые координационно связанные ионы металлов. Среди металлопротеинов есть белки, выполняющие депонирующие и транспортные функции (например, железосодержащие ферритин и трансферрин) и ферменты (например, цинксодержащая карбоангидраза и различные супероксиддисмутазы, содержащие в качестве активных центров ионы меди, марганца, железа и других металлов). Но и хромопротеины, содержащие ионы металлов, также можно отнести к металлопротеинам.

    Ppt%5C34928-slozhnye_belki_ch1_12.jpg" alt=">Металлопротеины часто являются ферментами. Ионы металлов в этом случае: - участвуют в ориентации субстрата"> Металлопротеины часто являются ферментами. Ионы металлов в этом случае: - участвуют в ориентации субстрата в активном центре фермента, входят в состав активного центра фермента и участвуют в катализе, являясь, например, акцепторами электронов на определенной стадии ферментативной реакции. Часто ион металла в составе фермента называют кофактором.

    Ppt%5C34928-slozhnye_belki_ch1_13.jpg" alt=">К ферментативным металлопротеинам относятся белки, содержащие например: - медь – цитохромоксидаза, в комплексе"> К ферментативным металлопротеинам относятся белки, содержащие например: - медь – цитохромоксидаза, в комплексе с другими ферментами дыхательной цепи митохондрий участвует в синтезе АТФ, - железо – ферритин, депонирующий железо в клетке, трансферрин, переносящий железо в крови, каталаза, обезвреживающая перекись водорода, - цинк – алкогольдегидрогеназа, обеспечивающая метаболизм этанола и других спиртов, лактатдегидрогеназа, участвующая в метаболизме молочной кислоты, - карбоангидраза, образующая угольную кислоту из CO2 и H2O, - щелочная фосфатаза, гидролизующая фосфорные эфиры различных соединений, - α2-макроглобулин, антипротеазный белок крови. - селен – тиреопероксидаза, участвующая в синтезе гормонов щитовидной железы, антиоксидантный фермент глутатионпероксидаза, - кальций – α-амилаза слюны и панкреатического сока, гидролизующая крахмал.

    Ppt%5C34928-slozhnye_belki_ch1_14.jpg" alt=">Ферритин">

    Ppt%5C34928-slozhnye_belki_ch1_15.jpg" alt=">Фосфопротеины – это белки, в которых присутствует фосфатная группа. Она связывается с пептидной цепью"> Фосфопротеины – это белки, в которых присутствует фосфатная группа. Она связывается с пептидной цепью через остатки тирозина, серина и треонина, т.е. тех аминокислот, которые содержат ОН-группу. Способ присоединения фосфата к белку на примере серина и тирозина

    Ppt%5C34928-slozhnye_belki_ch1_16.jpg" alt=">Фосфорная кислота может выполнять: - Структурную роль, придавая заряд, растворимость и изменяя свойства"> Фосфорная кислота может выполнять: - Структурную роль, придавая заряд, растворимость и изменяя свойства белка, например, в казеине молока, яичном альбумине. Наличие остатков фосфорной кислоты способствует связыванию кальция, что необходимо для формирования, например, костной ткани. - Функциональную роль. В клетке присутствует много белков, которые связаны с фосфатом не постоянно, а в зависимости от активности метаболизма. Белок может многократно переходить в фосфорилированную или в дефосфорилированную форму, что играет регулирующую роль в его работе.

    Ppt%5C34928-slozhnye_belki_ch1_17.jpg" alt=">Фосфорилирование - процесс переноса остатка фосфорной кислоты от фосфорилирующего агента-донора к субстрату, как правило,"> Фосфорилирование - процесс переноса остатка фосфорной кислоты от фосфорилирующего агента-донора к субстрату, как правило, катализируемый ферментами (киназами) и ведущий к образованию эфиров фосфорной кислоты. Дефосфорилирование (утрату остатка фосфорной кислоты) катализируют фосфатазы. АТФ + R-OH → АДФ + R-OPO3H2 R-OPO3H2 + Н2О → R-OH + Н3РО4

    Ppt%5C34928-slozhnye_belki_ch1_18.jpg" alt=">Примеры: 1) ферменты гликогенсинтаза и гликогенфосфорилаза 2) гистоны в фосфорилированном состоянии менее прочно связываются"> Примеры: 1) ферменты гликогенсинтаза и гликогенфосфорилаза 2) гистоны в фосфорилированном состоянии менее прочно связываются с ДНК и активность генома возрастает. Изменение конформации белка в фосфорилированном и дефосфорилированном состоянии

    Ppt%5C34928-slozhnye_belki_ch1_19.jpg" alt=">Липопротеины содержат в качестве простетической части нековалентно связанные липиды. Липиды, в частности"> Липопротеины содержат в качестве простетической части нековалентно связанные липиды. Липиды, в частности жиры, холестерол и его эфиры не растворяются в водных фазах организма, поэтому транспорт их кровью и лимфой осуществляется в виде комплексов с белками и фосфолипидами, которые называются липопротеинами.

    Ppt%5C34928-slozhnye_belki_ch1_20.jpg" alt=">Все липопротеины имеют сходное строение: ядро состоит из гидрофобных молекул: триацилглицеролов, эфиров холестерола, а"> Все липопротеины имеют сходное строение: ядро состоит из гидрофобных молекул: триацилглицеролов, эфиров холестерола, а на поверхности находится монослой фосфолипидов, полярные группы которых обращены к воде, а гидрофобные погружены в гидрофобное ядро липопротеина. Кроме фосфолипидов, на поверхности находятся белки – аполипопротеины (апобелками). Их выделяют несколько видов: А, В, С, D. В каждом типе липопротеинов преобладают соответствующие ему апобелки. Аполипопротеины выполняют различные функции. Интегральные аполипопротеины являются структурными компонентами. Периферические аполипопротеины в плазме крови могут передаваться от одного типа липопротеинов к другим, определяя их дальнейшие превращения.

    Ppt%5C34928-slozhnye_belki_ch1_21.jpg" alt=">Схема строения липопротеина Строение липопротеина">

    Ppt%5C34928-slozhnye_belki_ch1_22.jpg" alt=">Строение липопротеинов плазмы крови">

    Ppt%5C34928-slozhnye_belki_ch1_23.jpg" alt=">Выделяют четыре основных класса липопротеинов: -липопротеины высокой плотности (ЛПВП), -липопротеины низкой плотности (ЛПНП),"> Выделяют четыре основных класса липопротеинов: -липопротеины высокой плотности (ЛПВП), -липопротеины низкой плотности (ЛПНП), -липопротеины очень низкой плотности (ЛПОНП), -хиломикроны (ХМ). Каждый из типов ЛП образуется в разных тканях и транспортирует определённые липиды. Концентрация и соотношение в крови тех или иных липопротеинов играют ведущую роль в возникновении такой распространенной сосудистой патологии как атеросклероз. ЛПВП являются антиатерогенными, ЛПНП и ЛПОНП – атерогенными.

    Ppt%5C34928-slozhnye_belki_ch1_24.jpg" alt=">">

    Ppt%5C34928-slozhnye_belki_ch1_25.jpg" alt=">Гликопротеины или, гликоконъюгаты – это белки, содержащие углеводный компонент, ковалентно присоединенный к полипептидной основе."> Гликопротеины или, гликоконъюгаты – это белки, содержащие углеводный компонент, ковалентно присоединенный к полипептидной основе. Содержание углеводов в них варьирует от 1% до 98% по массе. Два подкласса белков, содержащих углеводы: ■ протеогликаны ■ гликопротеины

    Description="">

    Ppt%5C34928-slozhnye_belki_ch1_27.jpg" alt=">Для гликопротеинов характерно невысокое содержание углеводов, которые присоединены: - N-гликозидной связью к NН2-группе какого-нибудь"> Для гликопротеинов характерно невысокое содержание углеводов, которые присоединены: - N-гликозидной связью к NН2-группе какого-нибудь аминокислотного остатка, например, аспарагина; - О-гликозидной связью к гидроксильной группе остатка серина, треонина,тирозина, гидроксилизина.

    Ppt%5C34928-slozhnye_belki_ch1_28.jpg" alt=">Образование О- и N-гликозидных связей в гликопротеинах. 1 - N-гликозидная связь между амидной группой"> Образование О- и N-гликозидных связей в гликопротеинах. 1 - N-гликозидная связь между амидной группой аспарагина и ОН-группой моносахарида; 2 - О-гликозидная связь между ОН-группой серина и ОН-группой моносахарида.

    Ppt%5C34928-slozhnye_belki_ch1_29.jpg" alt=">Способ присоединения углевода к белку">

    Ppt%5C34928-slozhnye_belki_ch1_30.jpg" alt=">Функцией гликопротеинов являются: 1. Структурная – клеточная стенка бактерий, костный матрикс, например, коллаген, эластин."> Функцией гликопротеинов являются: 1. Структурная – клеточная стенка бактерий, костный матрикс, например, коллаген, эластин. 2. Защитная – например, антитела, интерферон, факторы свертывания крови (протромбин, фибриноген). 3. Рецепторная – присоединение эффектора приводит к изменению конформации белка-рецептора, что вызывает внутриклеточный ответ. 4. Гормональная – гонадотропный, адренокортикотропный и тиреотропный гормоны. 5. Ферментативная – холинэстераза, нуклеаза. 6. Транспортная – перенос веществ в крови и через мембраны, например, трансферрин, транскортин, альбумин, Na+,К+-АТФаза.

    Ppt%5C34928-slozhnye_belki_ch1_31.jpg" alt=">Схема строения белка-рецептора">

    Ppt%5C34928-slozhnye_belki_ch1_32.jpg" alt=">Хромопротеины - собирательное название сложных белков с окрашенными простетическими группами различной химической природы. "> Хромопротеины - собирательное название сложных белков с окрашенными простетическими группами различной химической природы. гемопротеины (содержат гем), ретинальпротеины (содержат витамин А), флавопротеины (содержат витамин В2), кобамидпротеины (содержат витамин В12).

    Ppt%5C34928-slozhnye_belki_ch1_33.jpg" alt=">Флавопротеины - это ферменты окислительно-восстановительных реакций. Содержат производные витамина В2 флавинмононуклеотид (ФМН) и флавинадениндинуклеотид"> Флавопротеины - это ферменты окислительно-восстановительных реакций. Содержат производные витамина В2 флавинмононуклеотид (ФМН) и флавинадениндинуклеотид (ФАД). Связываются данные простетические группы ковалентно и придают желтое окрашивание. Эти простетические группы являются производными изоаллоксазина.

    Ppt%5C34928-slozhnye_belki_ch1_34.jpg" alt=">Изоаллоксазин - гетероциклическое соединения, производное птеридина. Молекула изоаллоксазина состоит из трех ароматических колец -"> Изоаллоксазин - гетероциклическое соединения, производное птеридина. Молекула изоаллоксазина состоит из трех ароматических колец - бензольного, пиримидинового, пиразинового.

    Ppt%5C34928-slozhnye_belki_ch1_35.jpg" alt=">Гемопротеины - гем-содержащие хромопротеины. В качестве небелкового компонента включают структурно сходные железо- или магнийпорфирины."> Гемопротеины - гем-содержащие хромопротеины. В качестве небелкового компонента включают структурно сходные железо- или магнийпорфирины. Белковый компонент может быть разнообразным как по составу, так и по структуре. Основу структуры простетической группы большинства гемосодержащих белков составляет порфириновое кольцо, являющееся в свою очередь производным тетрапиррольного соединения – порфирина. Порфирин

    Ppt%5C34928-slozhnye_belki_ch1_36.jpg" alt=">Порфириновое кольцо способно образовывать координационные соединения с различными ионами металлов. В результате комплексообразования формируются"> Порфириновое кольцо способно образовывать координационные соединения с различными ионами металлов. В результате комплексообразования формируются металлопорфирины: содержащие ионы железа – гемоглобины, миоглобин, цитохромы, пероксидаза, каталаза и др. (красное окрашивание), содержщие ионы магния – хлорофилл (зеленое окрашивание). Витамин В12 (кобалимин) содержит координированный ион кобальта Со2+ в порфириноподобном макроцикле – коррине, состоящем из четырех частично гидрированных пиррольных колец (розовое окрашивание).

    Ppt%5C34928-slozhnye_belki_ch1_37.jpg" alt=">Хлорофилл b. Хлорофиллы участвуют в процессах фотосинтеза.">

    Ppt%5C34928-slozhnye_belki_ch1_38.jpg" alt=">Цитохромы различаются аминокислотным составом пептидных цепей, числом цепей и разделяются на типы а, b,"> Цитохромы различаются аминокислотным составом пептидных цепей, числом цепей и разделяются на типы а, b, с, d. Цитохромы находятся в составе дыхательной цепи и цепи микросомального окисления. Степень окисления железа в составе цитохромов меняется в отличие от гемоглобина и миоглобина Fe2+ ↔ Fe3+

    Ppt%5C34928-slozhnye_belki_ch1_39.jpg" alt=">Миоглобин (Мв) - белок, находящийся в красных мышцах, основная функция которого - создание запасов"> Миоглобин (Мв) - белок, находящийся в красных мышцах, основная функция которого - создание запасов О2, необходимых при интенсивной мышечной работе. Мв - сложный белок, содержащий белковую часть - апоМв и небелковую часть - гем. Первичная структура апоМв определяет его компактную глобулярную конформацию и структуру активного центра, к которому присоединяется небелковая часть миоглобина - гем. Кислород, поступающий из крови в мышцы, связывается с Fe2+ гема в составе миоглобина. Мв - мономерный белок, имеющий очень высокое сродство к О2, поэтому отдача кислорода миоглобином происходит только при интенсивной мышечной работе, когда парциальное давление O2 резко снижается. Формирование пространственных структур и функционирование миоглобина.

    Ppt%5C34928-slozhnye_belki_ch1_40.jpg" alt=">Формирование конформации Мв. В красных мышцах на рибосомах в ходе трансляции идет синтез первичной"> Формирование конформации Мв. В красных мышцах на рибосомах в ходе трансляции идет синтез первичной структуры Мв, представленной специфической последовательностью 153 аминокислотных остатков. Вторичная структура Мв содержит восемь α-спиралей, называемых латинскими буквами от А до Н, между которыми имеются неспирализованные участки. Третичная структура Мв имеет вид компактной глобулы, в углублении которой между F и Е α-спиралями расположен активный центр.

    Ppt%5C34928-slozhnye_belki_ch1_41.jpg" alt=">Структура миоглобина">

    Ppt%5C34928-slozhnye_belki_ch1_42.jpg" alt=">Особенности строения и функционирования активного центра Мв. Активный центр Мв сформирован преимущественно гидрофобными радикалами"> Особенности строения и функционирования активного центра Мв. Активный центр Мв сформирован преимущественно гидрофобными радикалами аминокислот, далеко отстоящими друг от друга в первичной структуре (например, Три39 и Фен138). К активному центру присоединяется плохо растворимые в воде лиганды - гем и О2. Гем - специфический лиганд апоМв.

    Ppt%5C34928-slozhnye_belki_ch1_43.jpg" alt=">Основу гема составляют четыре пиррольных кольца, соединенных метенильными мостиками; в центре расположен атом Fe2+,"> Основу гема составляют четыре пиррольных кольца, соединенных метенильными мостиками; в центре расположен атом Fe2+, соединенный с атомами азота пиррольных колец четырьмя координационными связями. В активном центре Мв кроме гидрофобных радикалов аминокислот имеются также остатки двух аминокислот с гидрофильными радикалами - Гис Е7 (Гис64) и Гис F8 (Гис93).

    Ppt%5C34928-slozhnye_belki_ch1_44.jpg" alt=">Гис F8 образует координационную связь с Fe2+ и прочно фиксирует гем в активном центре."> Гис F8 образует координационную связь с Fe2+ и прочно фиксирует гем в активном центре. Гис Е7 необходим для правильной ориентации в активном центре другого лиганда - O2 при его взаимодействии с Fe+2 гема. Микроокружение гема создает условия для прочного, но обратимого связывания O2 с Fe+2 и препятствует попаданию в гидрофобный активный центр воды, что может привести к его окислению в Fе3+.

    Ppt%5C34928-slozhnye_belki_ch1_45.jpg" alt=">Олигомерное строение Нв и регуляция сродства Нв к О2 лигандами. Гемоглобины человека -"> Олигомерное строение Нв и регуляция сродства Нв к О2 лигандами. Гемоглобины человека - семейство белков, так же как и миоглобин относящиеся к сложным белкам (гемопротеинам). Они имеют тетрамерное строение и содержат две α-цепи, но различаются по строению двух других полипептидных цепей (2α-, 2х-цепи). Строение второй полипептидной цепи определяет особенности функционирования этих форм Нв. Около 98% гемоглобина эритроцитов взрослого человека составляет гемоглобин А (2α-, 2β-цепи). В период внутриутробного развития функционируют два основных типа гемоглобинов: эмбриональный Нв (2α, 2ε), который обнаруживается на ранних этапах развития плода, и гемоглобин F (фетальный) - (2α, 2γ), который приходит на смену раннему гемоглобину плода на шестом месяце внутриутробного развития и только после рождения замещается на Нв А.

    Ppt%5C34928-slozhnye_belki_ch1_46.jpg" alt=">Нв А - белок, родственный миоглобину (Мв), содержится в эритроцитах взрослого человека. Строение его"> Нв А - белок, родственный миоглобину (Мв), содержится в эритроцитах взрослого человека. Строение его отдельных протомеров аналогично таковому у миоглобина. Вторичная и третичная структуры миоглобина и протомеров гемоглобина очень сходны, несмотря на то что в первичной структуре их полипептидных цепей идентичны только 24 аминокислотных остатка (вторичная структура протомеров гемоглобина, так же как миоглобин, содержит восемь α-спиралей, обозначаемых латинскими буквами от А до Н, а третичная структура имеет вид компактной глобулы). Но в отличие от миоглобина гемоглобин имеет олигомерное строение, состоит из четырех полипептидных цепей, соединенных нековалентными связями.

    Ppt%5C34928-slozhnye_belki_ch1_47.jpg" alt=">Олигомерная структура гемоглобина">

    Ppt%5C34928-slozhnye_belki_ch1_48.jpg" alt=">Каждый протомер Нв связан с небелковой частью - гемом и соседними протомерами. Соединение белковой"> Каждый протомер Нв связан с небелковой частью - гемом и соседними протомерами. Соединение белковой части Нв с гемом аналогично таковому у миоглобина: в активном центре белка гидрофобные части гема окружены гидрофобными радикалами аминокислот за исключением Гис F8 и Гис Е7, которые расположены по обе стороны от плоскости гема и играют аналогичную роль в функционировании белка и связывании его с кислородом. Кроме того, Гис Е7 выполняет важную дополнительную роль в функционировании Нв. Свободный гем имеет в 25 000 раз более высокое сродство к СО, чем к О2. СО в небольших количествах образуется в организме и, учитывая его высокое сродство к гему, он мог бы нарушать транспорт необходимого для жизни клеток О2. Однако в составе гемоглобина сродство гема к оксиду углерода превышает сродство к О2 всего в 200 раз благодаря наличию в активном центре Гис Е7. Остаток этой аминокислоты создает оптимальные условия для связывания гема с O2 и ослабляет взаимодействие гема с СО.

    Ppt%5C34928-slozhnye_belki_ch1_49.jpg" alt=">">

    Ppt%5C34928-slozhnye_belki_ch1_50.jpg" alt=">Пиррольные кольца гема расположены в одной плоскости, а ион Fe2+ в неоксигенированом состоянии Hb"> Пиррольные кольца гема расположены в одной плоскости, а ион Fe2+ в неоксигенированом состоянии Hb выступает над плоскостью на 0,6 А. При присоединении кислорода ион железа погружается в плоскость колец гема. В результате сдвигается и участок полипептидной цепи, нарушаются слабые связи в молекуле Hb и изменяется конформация всей глобулы. Таким образом, присоединение кислорода вызывает изменение пространственной структуры молекулы миоглобина или протомеров гемоглобина.

    Ppt%5C34928-slozhnye_belki_ch1_51.jpg" alt=">Гемоглобин может существовать как в свободной (дезоксигемоглобин), так и в оксигенированной форме, присоединяя до"> Гемоглобин может существовать как в свободной (дезоксигемоглобин), так и в оксигенированной форме, присоединяя до 4 молекул кислорода. Взаимодействие с кислородом 1-го протомера вызывает изменение его конформации, а также кооперативные конформационные изменения остальных протомеров. Сродство к кислороду возрастает, и присоединение О2 к активному центру 2-го протомера происходит легче, вызывая дальнейшую конформационную перестройку всей молекулы. В результате еще сильнее изменяется структура оставшихся протомеров и их активных центров, взаимодействие с О2 еще больше облегчается. В итоге 4-я молекула кислорода присоединяется к Hb примерно в 300 раз легче, чем 1-я. Так происходит в легких при высоком парциальном давлении кислорода.

    Ppt%5C34928-slozhnye_belki_ch1_52.jpg" alt=">Кооперативные изменения конформации молекулы гемоглобина при взаимодействии с кислородом">

    Ppt%5C34928-slozhnye_belki_ch1_53.jpg" alt=">В тканях, где содержание кислорода ниже, наоборот, отщепление каждой молекулы О2 облегчает освобождение последующих."> В тканях, где содержание кислорода ниже, наоборот, отщепление каждой молекулы О2 облегчает освобождение последующих. Таким образом, взаимодействие олигомерного белка гемоглобина с лигандом (О2) в одном центре связывания приводит к изменению конформации всей молекулы и других, пространственно удаленных центров, расположенных на других субъединицах (принцип «домино»). Подобные взаимосвязанные изменения структуры белка называют кооперативными конформационными изменениями. Они характерны для всех олигомерных белков и используются для регуляции их активности.

    Ppt%5C34928-slozhnye_belki_ch1_54.jpg" alt=">Взаимодействие обоих белков (Mb и Hb) с кислородом зависит от его парциального давления в"> Взаимодействие обоих белков (Mb и Hb) с кислородом зависит от его парциального давления в тканях. Эта зависимость имеет разный характер, что связано с их особенностями структуры и функционирования. Гемоглобин имеет S-образную кривую насыщения, которая показывает, что субъединицы белка работают кооперативно, и чем больше кислорода они отдают, тем легче идет освобождение остальных молекул О2. Этот процесс зависит от изменения парциального давления кислорода в тканях. График насыщения миоглобина кислородом имеет характер простой гиперболы, т.е. насыщение Mb кислородом происходит быстро и отражает его функцию - обратимое связывание с кислородом, высвобождаемым гемоглобином, и освобождение в случае интенсивной физической нагрузки.

    Ppt%5C34928-slozhnye_belki_ch1_55.jpg" alt=">Кривые насыщения миоглобина и гемоглобина кислородом">

    Ppt%5C34928-slozhnye_belki_ch1_56.jpg" alt=">CO2 и Н+, образующиеся при катаболизме органических веществ, уменьшают сродство гемоглобина к О2 пропорционально"> CO2 и Н+, образующиеся при катаболизме органических веществ, уменьшают сродство гемоглобина к О2 пропорционально их концентрации. Энергия, необходимая для работы клеток, вырабатывается преимущественно в митохондриях при окислении органических веществ с использованием O2, доставляемого из легких гемоглобином. В результате окисления органических веществ образуются конечные продукты их распада: СО2 и Н2O, количество которых пропорционально интенсивности протекающих процессов окисления. СO2 диффузией попадает из клеток в кровь и проникает в эритроциты, где под действием фермента карбоангидразы превращается в угольную кислоту. Эта слабая кислота диссоциирует на протон и бикарбонат ион. СО2 + Н2О → Н2СО3 → Н+ + НСО3-

    Ppt%5C34928-slozhnye_belki_ch1_57.jpg" alt=">Ионы Н+ способны присоединятся к радикалам Гис146 в β-цепях гемоглобина, т.е. в участках, удаленных"> Ионы Н+ способны присоединятся к радикалам Гис146 в β-цепях гемоглобина, т.е. в участках, удаленных от гема. Протонирование гемоглобина снижает его сродство к О2, способствует отщеплению О2 от оксиНв, образованию дезоксиНв и увеличивает поступление кислорода в ткани пропорционально количеству образовавшихся протонов. Увеличение количества освобожденного кислорода в зависимости от увеличения концентрации Н+ в эритроцитах называется эффектом Бора (по имени датского физиолога Христиана Бора, впервые открывшего этот эффект). В легких высокое парциальное давление кислорода способствует его связыванию с дезоксиНв, что уменьшает сродство белка к Н+. Освободившиеся протоны под действием карбоангидразы взаимодействуют с бикарбонатами с образованием СО2 и Н2О

    Ppt%5C34928-slozhnye_belki_ch1_58.jpg" alt=">Зависимость сродства Нв к О2 от концентрации СО2 и протонов (эффект Бора): А -"> Зависимость сродства Нв к О2 от концентрации СО2 и протонов (эффект Бора): А - влияние концентрации СО2 и Н+ на высвобождение О2 из комплекса с Нв (эффект Бора); Б - оксигенирование дезоксигемоглобина в легких, образование и выделение СО2.

    Ppt%5C34928-slozhnye_belki_ch1_59.jpg" alt=">Образовавшийся СО2 поступает в альвеолярное пространство и удаляется с выдыхаемым воздухом. Таким образом, количество"> Образовавшийся СО2 поступает в альвеолярное пространство и удаляется с выдыхаемым воздухом. Таким образом, количество высвобождаемого гемоглобином кислорода в тканях регулируется продуктами катаболизма органических веществ: чем интенсивнее распад веществ, например при физических нагрузках, тем выше концентрация СО2 и Н+ и тем больше кислорода получают ткани в результате уменьшения сродства Нв к О2.

    Ppt%5C34928-slozhnye_belki_ch1_60.jpg" alt=">Изменение функциональной активности белка при взаимодействии с другими лигандами вследствие конформационных изменений называется аллостерической"> Изменение функциональной активности белка при взаимодействии с другими лигандами вследствие конформационных изменений называется аллостерической регуляцией, а соединения-регуляторы - аллостерическими лигандами или эффекторами. Способность к аллостерической регуляции характерна, как правило, для олигомерных белков, т.е. для проявления аллостерического эффекта необходимо взаимодействие протомеров. При воздействии аллостерических лигандов белки меняют свою конформацию (в том числе и активного центра) и функцию.

    Ppt%5C34928-slozhnye_belki_ch1_61.jpg" alt=">Аллостерическая регуляция сродства Нв к О2 лигандом - 2,3-бис-фосфоглицератом. В эритроцитах из продукта"> Аллостерическая регуляция сродства Нв к О2 лигандом - 2,3-бис-фосфоглицератом. В эритроцитах из продукта окисления глюкозы - 1,3-бисфосфоглицерата синтезируется аллостерический лиганд гемоглобина - 2,3-бисфосфоглицерат (2,3-БФГ). В нормальных условиях концентрация 2,3-БФГ высокая и сравнима с концентрацией Нв. 2,3-БФГ имеет сильный отрицательный заряд (-5).

    Ppt%5C34928-slozhnye_belki_ch1_62.jpg" alt=">В центре тетрамерной молекулы гемоглобина находится полость. Ее образуют аминокислотные остатки всех четырех протомеров."> В центре тетрамерной молекулы гемоглобина находится полость. Ее образуют аминокислотные остатки всех четырех протомеров. В капиллярах тканей протонирование Нв (эффект Бора) приводит к разрыву связи между железом гема и О2. В молекуле дезоксигемоглобина по сравнению с оксигемоглобином возникают дополнительные ионные связи, соединяющие протомеры, вследствие чего размеры центральной полости по сравнению с оксигемоглобином увеличиваются. Центральная полость является местом присоединения 2,3-БФГ к гемоглобину. БФГ поступает в полость дезоксигемоглобина. 2,3-БФГ взаимодействует с гемоглобином в участке, удаленном от активных центров белка и относится к аллостерическим (регуляторным) лигандам, а центральная полость Нв является аллостерическим центром. 2,3-БФГ имеет сильный отрицательный заряд и взаимодействует с положительно заряженными группами двух β-цепей Нв. При этом его сродство к О2 снижается в 26 раз. В результате происходит высвобождение кислорода в капиллярах ткани при низком парциальном давлении О2. В легких высокое парциальное давление О2, наоборот, приводит к оксигенированию Нв и освобождению БФГ.

    Ppt%5C34928-slozhnye_belki_ch1_63.jpg" alt=">Центр связывания БФГ находится в положительно заряженной полости между 4 протомерами гемоглобина. Взаимодействие БФГ"> Центр связывания БФГ находится в положительно заряженной полости между 4 протомерами гемоглобина. Взаимодействие БФГ с центром связывания изменяет конформацию α- и β-протомеров НЬ и их активных центров. Сродство НЬ к молекулам О2 снижается и кислород высвобождается в ткани. В легких при высоком парциальном давлении О2 активные центры гемоглобина насыщаются за счет изменения конформации и БФГ вытесняется из аллостерического центра

    Ppt%5C34928-slozhnye_belki_ch1_64.jpg" alt=">">

    Ppt%5C34928-slozhnye_belki_ch1_65.jpg" alt=">Таким образом, олигомерные белки обладают новыми по сравнению с мономерными белками свойствами. Присоединение лигандов"> Таким образом, олигомерные белки обладают новыми по сравнению с мономерными белками свойствами. Присоединение лигандов на участках, пространственно удаленных друг от друга (аллостерических), способно вызывать конформационные изменения во всей белковой молекуле. Благодаря взаимодействию с регуляторными лигандами происходит изменение конформации и адаптация функции белковой молекулы к изменениям окружающей среды.

    Ppt%5C34928-slozhnye_belki_ch1_66.jpg" alt=">Около 15% углекислого газа, присутствующего в крови, переносится молекулами гемоглобина. В тканях часть молекул"> Около 15% углекислого газа, присутствующего в крови, переносится молекулами гемоглобина. В тканях часть молекул углекислого газа может присоединится к каждому протомеру молекулы гемоглобина, при этом снижается сродство Hb к кислороду. В легких, наоборот, из-за высокого парциального давления кислорода, О2 связывается с Hb, а СО2 высвобождается.

    Ppt%5C34928-slozhnye_belki_ch1_67.jpg" alt=">">

    Ppt%5C34928-slozhnye_belki_ch1_68.jpg" alt=">В молекуле гемоглобина S (так назван аномальный гемоглобин) мутантными оказались 2 β-цепи, в которых"> В молекуле гемоглобина S (так назван аномальный гемоглобин) мутантными оказались 2 β-цепи, в которых глутамат, высокополярная отрицательно заряженная аминокислота в положении 6 была заменена валином, содержащим гидрофобный радикал.

    Основным свойством белка, обеспечивающим его функцию, является избирательное взаимодействие с определенным веществом - лигандом.

    Лигандами могут быть вещества разной природы, как низкомолекулярные соединения, так и макромолекулы, в том числе и белки. На белковых молекулах есть участки, к которым присоединяется лиганд - центры связывания или активные центры. Центры связывания формируются из аминокислотных остатков, сближенных в результате формирования вторичной и третичной структуры.

    Связи между белком и лигандом могут быть нековалентными и ковалентными. Высокая специфичность взаимодействия («узнавания») белка и лиганда обеспечивается комплементарностью структуры центра связывания пространственной структуре лиганда.

    Под комплементарностью понимают химическое и пространственное соответствие активного центра белка и лиганда. Взаимодействие между белком Р и лигандом L описывается уравнением:

    белок + лиганд↔ белково-лигандный комплекс.

    1. Главными физико-химическими свойствами белков являются молекулярная масса, электрический заряд и растворимость в воде. Молекулярная масса белков может значительно варьировать. Например, гормон инсулин имеет молекулярную массу около 6 тыс. Да, а иммуноглобулин М - около 1 млн. Да. Молекулярная масса белка зависит от количества аминокислотных остатков, входящих в его состав, а также массы неаминокислотных компонентов. Масса одного остатка аминокислоты в среднем составляет 110 Да. Таким образом, зная количество остатков аминокислот в белке, можно оценить его молекулярную массу и наоборот (Н.Н.Мушкамбаров, 1995). Электрический заряд белка определяется соотношением положительно и отрицательно заряженных групп на поверхности его молекулы. Заряд белковой частицы зависит от рН среды. Для характеристики белка используют понятие «изоэлектрическая точка». Изоэлектрическая точка (pI) - значение pH среды, при котором суммарный заряд белковой частицы равен нулю. В изоэлектрической точке белки наименее устойчивы в растворе и легко выпадают в осадок. Величина pI зависит от соотношения кислых и основных аминокислот в белке. Для белков и пептидов с преобладанием кислых аминокислот (отрицательно заряженных при pH 7,0) значение pI находится в кислой среде; для белков и пептидов с преобладанием основных аминокислот (положительно заряженных при pH 7,0) значение pI находится в кислой среде. Изоэлектрическая точка - характерная константа белков, её значение для большинства белков животных тканей лежит в пределах от 5,5 до 7,0, что свидетельствует о преобладании в их составе кислых аминокислот. Однако в природе имеются белки, у которых значение изоэлектрической точки лежит при крайних значениях pH среды. В частности, величина pI пепсина (фермента желудочного сока) равна 1, в лизоцима (фермента, расщепляющего клеточную стенку микроорганизмов) - около 11. Значения молекулярной массы и изоэлектрической точки некоторых белков приведены в таблице 1.4. Таблица 1.4 Некоторые константы белков плазмы крови и тканей
    Белок Молекулярная масса, Да Изоэлектрическая точка
    Альбумин сывороточный 66 000 4.9
    Альбумин яичный 45 000 4.6
    α-Амилаза 50 000 5.3
    Гаптоглобин 85 000 4.2
    Гемоглобин 65 000 6.8
    Гистоны 15 000 10.8
    Иммуноглобулин А 150 000 7.3
    Иммуноглобулин G 150 000 5.8
    Иммуноглобулин М 950 000 6.6
    Инсулин 5 780 5.35
    Карбоксипептидаза 34 400 6.0
    Каталаза 245 000 5.6
    β-Лактоглобулин 37 100 5.2
    Лизоцим 14 000 11.0
    α 2 -Макроглобулин 820 000 5.4
    Миоглобин 16 000 7.0
    Орозомукоид 41 000 2.8
    Пепсин 35 000 1.0
    Рибонуклеаза 13 700 7.8
    Трансферрин 88 000 5.4
    Трипсиноген 24 000 9.3
    Уреаза 480 000 5.0
    Фибриноген 340 000 5.8
    Химотрипсиноген 25 700 9.5
    Церулоплазмин 151 000 4.4
    Цитохром с 12 400 10.7

    Растворимость белков в воде. Из курса биофизической химии известно, что белки как высокомолекулярные соединения образуют коллоидные растворы. Стабильность растворов белков в воде определяется следующими факторами:

    • величиной коллоидных частиц – чем они меньше, тем устойчивей раствор;
    • величиной заряда частиц – чем больше заряд частицы, тем стабильнее раствор;
    • величиной гидратной (сольватной) оболочки – чем больше сольватационной воды содержит коллоид, тем он устойчивее.

    Имейте в виду, что под действием различных физических и химических факторов может происходить осаждение белков из коллоидных растворов. Различают:

    • обратимые реакции осаждения (высаливание), когда осадок белка можно вновь растворить в воде с восстановлением его исходных физико-химических и биологических свойств;
    • необратимые реакции осаждения под действием факторов, вызывающих грубые нарушения структурной организации белковой молекулы (денатурацию).

    Заметьте, что в основе реакций осаждения белков могут лежать следующие механизмы:

    • нейтрализация электрического заряда – при добавлении электролитов (кислот, щелочей, солей);
    • разрушение гидратной оболочки – при добавлении водоотнимающих веществ (спирта, ацетона, концентрированных растворов электролитов) и при нагревании;
    • увеличение размеров коллоидных частиц – под действием факторов, вызывающих денатурацию белка.

    Чаще всего для действия факторов, вызывающих осаждение белков, характерно сочетание двух или всех трёх перечисленных механизмов.

    Биологическая активность. В основе функционирования любого белка лежит его способность к избирательному взаимодействию со строго определёнными молекулами или ионами - лигандами. Например, для ферментов, катализирующих химические реакции, лигандами будут вещества, участвующие в этих реакциях (субстраты), а также кофакторы, активаторы и ингибиторы. Для транспортных белков лигандами являются транспортируемые вещества и т.д.

    Лиганд способен взаимодействовать с определённым участком белковой молекулы - центром связывания или активным центром. Этот центр формируется пространственно сближенными радикалами аминокислот на уровне третичной структуры белка. Способность лиганда взаимодействовать с центром связывания обусловлена их комплементарностью, то есть взаимным дополнением их пространственной структуры (подобно взаимодействию «ключ - замок»). Между функциональными группами лиганда и центра связывания образуются нековалентные (водородные, ионные, гидрофобные) связи. Комплементарностью лиганда и центра связывания можно объяснить высокую специфичность (избирательность) взаимодействия белок - лиганд.

    Итак, различные белки отличаются друг от друга по своим физико-химическим свойствам и биологической активности. На этих различиях основаны методы разделения белковых смесей на фракции и выделения отдельных ферментных белков. Данные методы широко используются в медицинской биохимии и биотехнологии.

    2. Денатурация белков – это изменение нативных (природных) физико-химических и, главное, биологических свойств белка вследствие нарушения его четвертичной, третичной и даже вторичной структуры. Денатурацию белка могут вызвать:

    • температура выше 60°С;
    • ионизирующая радиация;
    • концентрированные кислоты и щёлочи;
    • соли тяжёлых металлов (ртути, свинца, кадмия);
    • органические соединения (спирты, фенолы, кетоны).

    Для денатурированных белков характерно:

    • изменение конформации молекулы;
    • уменьшение растворимости в воде;
    • изменение заряда молекулы;
    • меньшая устойчивость к действию протеолитических ферментов;
    • потеря биологической активности. Это можно объяснить разрушением нативной третичной структуры белка, на уровне которой формируется центр связывания лигандов.

    Обратите внимание, что при определённых условиях возможно восстановление исходной (нативной) конформации белка после удаления фактора, вызвавшего денатурацию. Этот процесс получил название ренативации.

    Запомните некоторые примеры использования процесса денатурации белков в медицине:

    • для осаждения белков плазмы крови при определении содержания небелковых веществ в крови;
    • при проведении дезинфекции и санитарной обработки;
    • при лечении и профилактике отравлений солями тяжёлых металлов (в качестве противоядия применяют молоко или яичный белок);
    • для получения лекарственных веществ белковой природы (используется денатурация в мягких условиях с последующей ренативацией).

    4 (1). Гемоглобин - аллостерический белок. Конформационные изменения молекулы гемоглобина. Кооперативный эффект. Регуляторы сродства гемоглобина к кислороду. Структурные и функциональные различия миоглобина и гемоглобина.

    Гемоглобин: аллостерический белок
    Переход в процессе эволюции от мономерного миоглобина к тетрамерному гемоглобину сопровождался появлением новых свойств. Молекула гемоглобина значительно сложнее, чем молекула миоглобина. Прежде всего гемоглобин помимо 0 2 транспортирует Н + и С0 2 . Во-вторых, связывание кислорода гемоглобином регулируется специфическими компонентами внутренней среды, а именно Н + , С0 2 и органическими фосфорными соединениями. Эти регуляторы оказывают сильнейшее влияние на способность гемоглобина связывать кислород, несмотря на то что они присоединяются к белку в участках, отстоящих далеко от гема. Вообще так называемое аллостериче-ское взаимодействие, т.е. взаимодействие между пространственно разделенными участками, имеет место во многих белках. Аллостерические эффекты играют важнейшую роль в регуляции и интеграции молекулярных процессов в биологических системах. Гемоглобин является наиболее изученным аллостерическим белком, и потому имеет смысл более подробно рассмотреть его структуру и функцию.

    КОНФОРМАЦИОННЫМИ ИЗМЕНЕНИЯМИ В ГЕМОГЛОБИНЕ

    Связывание кислорода сопровождается разрывом солевых

    связей, образованных концевыми карбоксильными группами

    субъединиц (рис.7) Это облегчает связывание следующих молекул

    кислорода, поскольку при этом требуется разрыв меньшего числа

    солевых связей. Указанные изменения заметно влияют на

    вторичную, третичную и особенно четвертичную структуру

    гемоглобина. При этом одна А/В-пара субъединиц поворачивается

    относительно другой А/В-пары, что приводит к компактизации

    тетрамера и повышению сродства гемов к кислороду (рис. 8 и 9).

    КОНФОРМАЦИОННЫЕ ИЗМЕНЕНИЯ В ОКРУЖЕНИЕ ГЕМОГРУППЫ

    Оксигенирование гемоглобина сопровождается структурными

    изменениями в окружении гемогруппы. При оксигенировании атом

    железа, который в дезоксигемоглобине выступал на 0,06 нм из

    плоскости гемового кольца, втягивает в эту плоскость (рис.

    10). Вслед за атомом железа ближе к гему перемещается

    проксимальный гистидин (F8), а также связанные с ним соседние

    Молекула гемоглобина может находиться в двух формах - напряженной и расслабленной. Расслабленная форма гемоглобина имеет свойство насыщаться кислородом в 70 раз быстрее, чем напряженная. Изменение фракций напряженной и расслабленной формы в общем количестве гемоглобина в крови обусловливает S-образный вид кривой диссоциации оксигемоглобина, а следовательно, так называемое сродство гемоглобина к кислороду. Если вероятность перехода от напряженной формы гемоглобина к расслабленной больше, то возрастает сродство гемоглобина к кислороду, и наоборот. Вероятность образования указанных фракций гемоглобина изменяется в большую или меньшую сторону под влиянием нескольких факторов. Основной фактор - это связывание кислорода с геминовой фуппой молекулы гемоглобина. При этом чем больше геминовых фупп гемоглобина связывают кислород в эритроцитах, тем более легким становится переход молекулы гемоглобина к расслабленной форме и тем выше их сродство к кислороду. Поэтому при низком Р02, что имеет место в метаболически активных тканях, сродство гемоглобина к кислороду ниже, а при высоком Р02 - выше. Как только гемоглобин захватывает кислород, повышается его сродство к кислороду и молекула гемоглобина становится насыщенной при связывании с четырьмя молекулами кислорода. Когда эритроциты, содержащие гемоглобин, достигают тканей, то кислород из эритроцитов диффундирует в клетки. В мышцах он поступает в своеобразного депо кислорода - в молекулы миоглобина, из которого кислород используется в биологическом окислении мышц. Диффузия кислорода из гемоглобина эритроцитов в ткани обусловлена низким Р02 в тканях - 35 мм рт. ст. Внутри клеток тканей напряжение кислорода, необходимое для поддержания нормального метаболизма, составляет еще меньшую величину - не более 1 кПа. Поэтому кислород путем диффузии из капилляров достигает метаболически активных клеток. Некоторые ткани приспособлены к низкому содержанию Р02 в капиллярах крови, что компенсируется высокой плотностью капилляров на единицу объема тканей. Например, в скелетной и сердечной мышцах Р02 в капиллярах может снизиться чрезвычайно быстро во время сокращения. В мышечных клетках содержится белок миоглобин, который имеет более высокое сродство к кислороду, чем гемоглобин. Миоглобин интенсивно насыщается кислородом и способствует его диффузии из крови в скелетную и сердечную мышцы, где он обусловливает процессы биологического окисления. Эти ткани способны экстрагировать до 70 % кислорода из крови, проходящей через них, что обусловлено снижением сродства гемоглобина к кислороду под влиянием температуры тканей и рН. Эффект рН и температуры на сродство гемоглобина к кислороду. Молекулы гемоглобина способны реагировать с ионами водорода, в результате этой реакции происходит снижение сродства гемоглобина к кислороду. При насыщении гемоглобина менее 100 % низкое рН понижает связывание кислорода с гемоглобином - кривая диссоциации оксигемоглобина смещается вправо по оси х. Это изменение свойства гемоглобина под влиянием ионов водорода называется эффектом Бора. Метаболически активные ткани продуцируют кислоты, такую как молочная, и С02. Если рН плазмы крови снижается от 7,4 в норме до 7,2, что имеет место при сокращении мыщц, то концентрация кислорода в ней будет возрастать вследствие эффекта Бора. Например, при постоянном рН 7,4 кровь отдавала бы порядка 45 % кислорода, т. е. насыщение гемоглобина кислородом снижалось до 55 %. Однако когда рН снижается до 7,2, кривая диссоциации смещается по оси х вправо. В результате насыщение гемоглобина кислородом падает до 40 %, т. е. кровь может отдавать в тканях до 60 % кислорода, что на 1/з больше, чем при постоянном рН. Метаболически активные ткани повышают продукцию тепла. Повышение температуры тканей при физической работе изменяет соотношение фракций гемоглобина в эритроцитах и вызывает смещение кривой диссоциации оксигемоглобина вправо вдоль оси х. В результате большее количество кислорода будет освобождаться из гемоглобина эритроцитов и поступать в ткани. Эффект 2,3-дифосфоглицерата (2,3-ДФГ) на сродство гемоглобина к кислороду. При некоторых физиологических состояниях, например при понижении Р02 в крови ниже нормы (гипоксия) в результате пребывания человека на большой высоте над уровнем моря, снабжение тканей кислородом становится недостаточным. При гипоксии может понижаться сродство гемоглобина к кислороду вследствие увеличения содержания в эритроцитах 2,3-ДФГ. В отличие от эффекта Бора, уменьшение сродства гемоглобина к кислороду под влиянием 2,3-ДФГ не является обратимым в капиллярах легких. Однако при движении крови через капилляры легких эффект 2,3-ДФГ на снижение образования оксигемоглобина в эритроцитах (плоская часть кривой диссоциации оксигемоглобина) выражен в меньшей степени, чем отдача кислорода под влиянием 2,3-ДФГ в тканях (наклонная часть кривой), что обусловливает нормальное кислородное снабжение тканей

    Нативная трехмерная структура устанавливается в результате действия целого ряда энергетических и энтропийных факторов. Изменение конформационного состояния молекулы белка за счет различных внешних воздействий (рН, температура, ионный состав) отражается и на его функциональной активности. Конформационные перестройки происходят весьма быстро. На первых стадиях они носят локальный микроконформационный характер, вызывая смещения лишь отдельных атомных групп. Распространение таких локальных смещений на остальные области макромолекулярной структуры приведет уже к общему конформационному изменению молекулы биополимера.

    Миоглобин - состоит из одной полипептидной цепи, включающей 153 аминокислотных остатка, и одной железопорфириновой группы (гем) на молекулу. Миоглобин относится к гемопротеинам, могущим обратимо связывать кислород; в клетках скелетной мышцы он ответствен за резервирование кислорода, а также за увеличение скорости его диффузии через клетки. Филогенетически миоглобин - предшественник гемоглобина. Молекула не содержит дисульфидиых связей и характеризуется a-спиральностью на 77%. Гем, ответственный за связывание кислорода, находится в «гидрофобном кармане», образованном особыми, для этого предназначенными аминокислотами. Гем представляет собой макроцикл протопорфирина с координационно связанным ионом двухвалентного железа, находящимся в центре молекулы. Такая пространственная фиксация гема делает возможным связывание молекулы кислорода в качестве шестого лиганда.

    Гемоглобин - «дыхательный» белок крови. Он осуществляет транспорт кислорода по кровеносной системе легких к другим органам и центрам потребления. Молекула гемоглобина состоит из четырех попарно идентичных полипептидных цепей, каждая из которых несет гем. Полипептидные цепи гемоглобина называют a и b, а симметричное строение молекулы записывают как a 2 b 2 . Образование четвертичной структуры осуществляется путем гидрофобных взаимодействий между отдельными полипептидными цепями. При присоединении кислорода к гему образуется оксигемоглобин, четвертичная структура которого лишь незначительно отличается от неоксигенированной формы.

    Присоединение кислорода индуцирует ряд конформационных изменений в молекуле НЬ. Связывание кислорода с переводом иона Fe 2+ в низкоспиновое состояние сопровождается одновременным смещением железа в плоскость гемовой группы. Происходит поэтапный разрыв солевых мостиков между a-субъединицами. Расстояние между гемами a--субъединиц увеличивается, а между гемами b-субъединиц сокращается. В целом оксигенация переводит каждую из субъединиц из дезокси- и оксиконформацию. Разрыв четырех солевых мостиков из шести при оксигенации первых двух a-субъединиц способствует разрыву двух остальных мостиков и, следовательно, облегчает присоединение следующих молекул кислорода к остальным субъединицам, увеличивая сродство их к кислороду в несколько сотен раз. В этом и состоит кооперативный характере присоединения.

    5 (1). Первичная и вторичная структуры ДНК. Правила Чаргаффа. Принцип комплементарности. Типы связей в молекуле ДНК. Биологическая роль ДНК. Молекулярные болезни - следствие генных мутаций.

    Первичная структура ДНК - порядок чередования дезоксирибонуклеозидмонофосфатов (дНМФ) в полинукпеотидной цепи.

    Каждая фосфатная группа в полинукпеотидной цепи, за исключением фосфорного остатка на 5"-конце молекулы, участвует в образовании двух эфирных связей с участием 3"- и 5"-углеродных атомов двух соседних дезоксирибоз, поэтому связь между мономерами обозначают 3", 5"-фосфодиэфирной.

    Концевые нуклеотиды ДНК различают по структуре: на 5"-конце находится фосфатная группа, а на 3"-конце цепи - свободная ОН-группа. Эти концы называют 5"- и 3"-концами. Линейная последовательность дезоксирибонуклеотидов в полимерной цепи ДНК обычно сокращённо записывают с помощью однобуквенного кода, например -A-G-C-T-T-A-C-A- от 5"- к 3"-концу.

    В каждом мономере нуклеиновой кислоты присутствует остаток фосфорной кислоты. При рН 7 фосфатная группа полностью ионизирована, поэтому in vivo нуклеиновые кислоты существуют в виде полианионов (имеют множественный отрицательный заряд). Остатки пентоз тоже проявляют гидрофильные свойства. Азотистые основания почти нерастворимы в воде, но некоторые атомы пуринового и пиримидинового циклов способны образовывать водородные связи.

    Вторичная структура ДНК. В 1953 г. Дж. Уотсоном и Ф. Криком была предложена модель пространственной структуры ДНК. Согласно этой модели, молекула ДНК имеет форму спирали, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Двойная спираль правозакрученная, полинуклеотидньхе цепи в ней антипараллельны (рис. 4-6), т.е. если одна из них ориентирована в направлении 3"→5", то вторая - в направлении 5"→3". Поэтому на каждом из концов

    Рис. 4-6. Двойная спираль ДНК. Молекулы ДНК состоят из двух антипараллельных цепей с комплементарной последовательностью нукпеотидов. Цепи закручены относительно друг друга в правозакрученную спираль так, что на один виток приходится примерно 10 пар нуклеотидов.

    молекулы ДНК расположены 5"-конец одной цепи и 3"-конец другой цепи.

    Все основания цепей ДНК расположены внутри двойной спирали, а пентозофосфатный остов - снаружи. Полинуклеотидные цепи удерживаются относительно друг друга за счёт водородных связей между комплементарными пуриновыми и пиримидиновыми азотистыми основаниями А и Т (две связи) и между G и С (три связи) (рис. 4-7). При таком сочетании каждая

    Рис. 4-7. Пурин-пиримидиновые пары оснований в ДНК.

    пара содержит по три кольца, поэтому общий размер этих пар оснований одинаков по всей длине молекулы. Водородные связи при других сочетаниях оснований в паре возможны, но они значительно слабее. Последовательность нуклеотидов одной цепи полностью комплементарна последовательности нуклеотидов второй цепи. Поэтому, согласно правилу Чаргаффа (Эрвин Чаргафф в 1951 г. установил закономерности в соотношении пуриновых и пиримидиновых оснований в молекуле ДНК), число пуриновых оснований (А + G) равно числу пиримидиновых оснований (Т + С).

    Комплементарые основания уложены в стопку в сердцевине спирали. Между основаниями двухцепочечной молекулы в стопке возникают гидрофобные взаимодействия, стабилизирующие двойную спираль.

    Такая структура исключает контакт азотистых остатков с водой, но стопка оснований не может быть абсолютно вертикальной. Пары оснований слегка смещены относительно друг друга. В образованной структуре различают две бороздки - большую, шириной 2,2 нм, и малую, шириной 1,2 нм. Азотистые основания в области большой и малой бороздок взаимодействуют со специфическими белками, участвующими в организации структуры хроматина.

    Пра́вила Ча́ргаффа - система эмпирически выявленных правил, описывающих количественные соотношения между различными типами азотистых оснований в ДНК. Были сформулированы в результате работы группы биохимика Эрвина Чаргаффа в 1949-1951 гг.

    До работ группы Чаргаффа господствовала так называемая «тетрануклеотидная» теория, согласно которой ДНК состоит из повторяющихся блоков по четыре разных азотистых основания (аденин, тимин, гуанин и цитозин). Чаргаффу и сотрудникам удалось разделить нуклеотиды ДНК при помощи бумажной хроматографии и определить точные количественные соотношения нуклеотидов разных типов. Они значительно отличались от эквимолярных, которых можно было бы ожидать, если бы все четыре основания были представлены в равных пропорциях. Соотношения, выявленные Чаргаффом для аденина (А), тимина (Т), гуанина (Г) и цитозина (Ц), оказались следующими:

    1. Количество аденина равно количеству тимина, а гуанина - цитозину: А=Т, Г=Ц.

    2. Количество пуринов равно количеству пиримидинов: А+Г=Т+Ц.

    3. Количество оснований с аминогруппами в положении 6 равно количеству оснований с кетогруппами в положении 6: А+Ц=Г+Т.

    Вместе с тем, соотношение (A+Т):(Г+Ц) может быть различным у ДНК разных видов. У одних преобладают пары АТ, в других - ГЦ.

    Правила Чаргаффа, наряду с данными рентгеноструктурного анализа, сыграли решающую роль в расшифровке структуры ДНК Дж. Уотсоном и Фрэнсисом Криком.

    Комплемента́рность химии , молекулярной биологии и генетике ) - взаимное соответствие молекул биополимеров или их фрагментов, обеспечивающее образование связей между пространственно взаимодополняющими (комплементарными) фрагментами молекул или их структурных фрагментов вследствие супрамолекулярных взаимодействий (образование водородных связей, гидрофобных взаимодействий, электростатических взаимодействий заряженных функциональных групп и т. п.).

    Взаимодействие комплементарных фрагментов или биополимеров не сопровождается образованием ковалентной химической связи между комплементарными фрагментами, однако из-за пространственного взаимного соответствия комплементарных фрагментов приводит к образованию множества относительно слабых связей (водородных и ван-дер-ваальса) с достаточно большой суммарной энергией, что приводит к образованию устойчивых молекулярных комплексов.

    Вместе с тем следует отметить, что механизм каталитичекой активности ферментов определяется комплементарностью фермента и переходного состояния либо промежуточного продукта катализируемой реакции - и в этом случае может происходить обратимое образование химической связи.

    Комплементарность нуклеиновых кислот

    В случае нуклеиновых кислот - как олиго- так и полинуклеотидов азотистые основания нуклеотидов способны вследствие образования водородных связей формировать парные комплексы аденин -тимин (или урацил в РНК ) и гуанин -цитозин при взаимодействии цепей нуклеиновых кислот . Такое взаимодействие играет ключевую роль в ряде фундаментальных процессов хранения и передачи генетической информации: репликации ДНК , обеспечивающей передачу генетической информации при делении клетки, транскрипции ДНК в РНК при синтезе белков , кодируемых ДНК гена , хранении генетической информации в двухцепочечной ДНК и процессах репарации ДНК при её повреждении.

    Принцип комплементарности используется в синтезе ДНК. Это строгое соответствие соединения азотистых оснований, соединёнными водородными связями, в котором: А-Т (Аденин соединяется с Тимином ) Г-Ц (Гуанин соединяется с Цитозином )

    Ферментативный катализ

    Комплементарное связывание фермент-субстрат является ключевым фактором в механизме ферментативной активности и, в отличие описанных выше ситуаций с образованием химически несвязанных комплексов может приводить к инициированию химической реакции - в случае связи фермента с субстратом комплементарность относительно невысока, однако при высокой комплементарности к переходному реакционному состоянию субстрата происходит стабилизация этого состояния, что приводит к эффекту каталитической активности ферментов: такая стабилизация переходного состояния эквивалентна снижению энергии активации и, соответственно, резкому увеличению скорости реакции.