Вещество состоит из молекул. Под молекулой мы будем понимать наименьшую частицу данного вещества, сохраняющую химические свойства данного вещества.

Читатель : А в каких единицах измеряется масса молекул?

Автор : Массу молекулы можно измерять в любых единицах массы, например в тоннах, но поскольку массы молекул очень малы: ~10 –23 г, то для удобства ввели специальную единицу – атомную единицу массы (а.е.м.).

Атомной единицей массы называется величина, равная -й массы атома углерода 6 С 12 .

Запись 6 С 12 означает: атом углерода, имеющий массу 12 а.е.м. и заряд ядра – 6 элементарных зарядов. Аналогично, 92 U 235 – атом урана массой 235 а.е.м. и зарядом ядра 92 элементарных заряда, 8 О 16 – атом кислорода массой 16 а.е.м и зарядом ядра 8 элементарных зарядов и т.д.

Читатель : Почему в качестве атомной единицы массывзяли именно (а не или ) часть массы атома и именно углерода, а не кислорода или плутония?

Экспериментально установлено, что 1 г » 6,02×10 23 а.е.м.

Число, показывающее, во сколько раз масса 1 г больше 1 а.е.м, называется числом Авогадро : N A = 6,02×10 23 .

Отсюда

N А × (1 а.е.м) = 1 г. (5.1)

Пренебрегая массой электронов и различием в массах протона и нейтрона, можно сказать, что число Авогадро приблизительно показывает, сколько надо взять протонов (или, что почти то же самое, атомов водорода), чтобы образовалась масса в 1 г (рис. 5.1).

Моль

Масса молекулы, выраженная в атомных единицах массы, называется относительной молекулярной массой .

Обозначается М r ­ (r – от relative – относительный), например:

12 а.е.м, = 235 а.е.м.

Порция вещества, которая содержит столько же граммов данного вещества, сколько атомных единиц массы содержит молекула данного вещества, называется молем (1 моль) .

Например: 1) относительная молекулярная масса водорода Н 2: , следовательно, 1 моль водорода имеет массу 2 г;

2) относительная молекулярная масса углекислого газа СО 2:

12 а.е.м. + 2×16 а.е.м. = 44 а.е.м.

следовательно, 1 моль СО 2 имеет массу 44 г.

Утверждение. Один моль любого вещества содержит одно и то же число молекул: N А = 6,02×10 23 шт.

Доказательство . Пусть относительная молекулярная масса вещества М r (а.е.м.) = М r × (1 а.е.м.). Тогда согласно определению 1 моль данного вещества имеет массу М r (г) = М r ×(1 г). Пусть N – число молекул в одном моле, тогда

N ×(масса одной молекулы) = (масса одного моля),

Моль – основная единица измерения в СИ.

Замечание . Моль можно определить иначе: 1 моль – это N А = = 6,02×10 23 молекул данного вещества. Тогда легко понять, что масса 1 моля равна М r (г). Действительно, одна молекула имеет массу М r (а.е.м.), т.е.

(масса одной молекулы) = М r × (1 а.е.м.),

(масса одного моля) = N А ×(масса одной молекулы) =

= N А × М r × (1 а.е.м.) = .

Масса 1 моля называется молярной массой данного вещества.

Читатель : Если взять массу т некоторого вещества, молярная масса которого равна m, то сколько это будет молей?

Запомним:

Читатель : А в каких единицах в системе СИ следует измерять m?

, [m] = кг/моль.

Например, молярная масса водорода

Количество вещества ν равно отношению числа молекул в данном теле к числу атомов в 0,012 кг углерода, то есть количеству молекул в 1 моле вещества.
ν = N / N A
где N – количество молекул в данном теле, N A – количество молекул в 1 моле вещества, из которого состоит тело. N A – это постоянная Авогадро. Количество вещества измеряется в молях. Постоянная Авогадро – это количество молекул или атомов в 1 моле вещества. Эта постоянная получила своё название в честь итальянского химика и физика Амедео Авогадро (1776 – 1856). В 1 моле любого вещества содержится одинаковое количество частиц.
N A = 6,02 * 10 23 моль -1 Молярная масса – это масса вещества, взятого в количестве одного моля:
μ = m 0 * N A
где m 0 – масса молекулы. Молярная масса выражается в килограммах на моль (кг/моль = кг*моль -1). Молярная масса связана с относительной молекулярной массой соотношением:

μ = 10 -3 * M r [кг*моль -1 ]
Масса любого количества вещества m равна произведению массы одной молекулы m 0 на количество молекул:
m = m 0 N = m 0 N A ν = μν
Количество вещества равно отношению массы вещества к его молярной массе:

ν = m / μ
Массу одной молекулы вещества можно найти, если известны молярная масса и постоянная Авогадро:
m 0 = m / N = m / νN A = μ / N A

Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют также форму в виде упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц и др. . Вводя эти обозначения, получим:

Если теперь опытным путем определить количества частиц и соответствующие двум различным значениям то можно будет написать:

Вычитая из первого уравнения второе, найдем:

Из этого соотношения можно определить если только знать массу частицы

При всей простоте и ясности основной идеи опыты Перрена были связаны с преодолением больших трудностей. В качестве объекта исследования им были выбраны водные эмульсии мастики и гуммигута, которые подвергались центрифугированию для получения эмульсий, состоящих из зернышек одинакового размера. Размер зернышек, которые считались шариками, определялся по скорости их оседания. За движением отдельного зернышка следить было невозможно и потому наблюдалась скорость оседания верхней границы эмульсии, т. е. средняя скорость оседания многих тысяч зернышек. Зная плотность эмульгированного вещества и определяя размеры зернышек эмульсии, можно было вычислить их массы. Далее необходимо было определить числа С этой целью к предметному стеклышку для микроскопических наблюдений Перрен приклеил второе стекло с просверленным в нем круглым отверстием, так что образовалась цилиндрическая прозрачная кювета. Поместив в кювету каплю эмульсии и закрыв для предотвращения испарения кювету покровным стеклышком, можно было с помощью микроскопа наблюдать зернышки эмульсии. Если воспользоваться объективом с небольшой глубиной поля зрения, то в микроскопе будут видны только зернышки, расположенные в очень тонком слое жидкости. Практически в этих опытах можно сосчитать лишь небольшое количество зернышек, поскольку их число непрерывно меняется. Для преодоления этого затруднения в фокальной

плоскости окуляра помещался непрозрачный экран с маленьким круглым отверстием. Благодаря этому поле зрения микроскопа сильно уменьшалось, и наблюдатель мог сразу определить, сколько зернышек в данный момент находится в поле зрения (рис. 12).

Повторяя подобные наблюдения через правильные промежутки времени, записывая наблюдаемые числа зерен и усредняя полученные данные, Перрен показал, что среднее число зерен на данном уровне стремится к некоторому определенному пределу, соответствующему плотности эмульсии на этом уровне. Для того чтобы проиллюстрировать трудоемкость этих опытов, можно указать, что для получения точного результата необходимо было производить несколько тысяч измерений.

Рис. 12. Распределение зерен эмульсии.

Определив с желаемой степенью точности плотность эмульсии на некотором уровне Перрен перемещал микроскоп в вертикальном направлении и измерял плотность эмульсии на втором уровне Тщательно выполненные измерения показали, что распределение зернышек эмульсии по высоте подчиняется барометрической формуле (уравнение 37).

Согласно изменениям определений основных единиц СИ точно равно

N A = 6,022 140 76⋅10 23 моль −1 .

Иногда в литературе проводят различие между постоянной Авогадро N A , имеющей размерность моль −1 , и численно равным ей безразмерным числом Авогадро А .

Закон Авогадро

История измерения константы

Сам Авогадро не делал оценок числа молекул в заданном объёме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объём, предпринял в году Йозеф Лошмидт . Из вычислений Лошмидта следовало, что для воздуха количество молекул на единицу объёма составляет 1,81⋅10 18 см −3 , что примерно в 15 раз меньше истинного значения. Через 8 лет Максвелл привёл гораздо более близкую к истине оценку «около 19 миллионов миллионов миллионов» молекул на кубический сантиметр, или 1,9⋅10 19 см −3 . По его оценке числа Авогадро было приблизительно 10 22 {\displaystyle 10^{22}} .

В действительности в 1 см³ идеального газа при нормальных условиях содержится 2,68675⋅10 19 молекул . Эта величина была названа числом (или постоянной) Лошмидта . С тех пор было разработано большое число независимых методов определения числа Авогадро. Превосходное совпадение полученных значений является убедительным свидетельством реального количества молекул.

Современные оценки

Официально принятое в 2010 году значение числа Авогадро было измерено при использовании двух сфер, изготовленных из кремния-28 . Сферы были получены в Институте кристаллографии имени Лейбница и отполированы в австралийском Центре высокоточной оптики настолько гладко, что высоты выступов на их поверхности не превышали 98 нм . Для их производства был использован высокочистый кремний-28, выделенный в нижегородском из высокообогащённого по кремнию-28 тетрафторида кремния, полученного в Центральном конструкторском бюро машиностроения в Санкт-Петербурге.

Располагая такими практически идеальными объектами, можно с высокой точностью подсчитать число атомов кремния в шаре и тем самым определить число Авогадро. Согласно полученным результатам, оно равно 6,02214084(18)·10 23 моль −1 .

N A = 6,022 141 29(27)⋅10 23 моль −1 . N A = 6,022 140 857(74)⋅10 23 моль −1

Связь между константами

См. также

Комментарии

Примечания

  1. Ранее выводилось как количество молекул в грамм-молекуле или атомов в грамм-атоме .
  2. Авогадро постоянная // Физическая энциклопедия / Гл. ред. А. М. Прохоров . - М. : Советская энциклопедия , 1988. - Т. 1. - С. 11. - 704 с. - 100 000 экз.
  3. в отличие от N , обозначающее количество частиц (англ. Particle number )
  4. http://www.iupac.org/publications/books/gbook/green_book_2ed.pdf
  5. , с. 22-23.
  6. , с. 23.
  7. On the possible future revision of the International System of Units, the SI. Resolution 1 of the 24th meeting of the CGPM (2011).