Из популярного американского блога Cracked.

Теория игр занимается тем, что изучает способы сделать лучший ход и в результате получить как можно больший кусок выигрышного пирога, оттяпав часть его у других игроков. Она учит подвергать анализу множество факторов и делать логически взвешенные выводы. Я считаю, её нужно изучать после цифр и до алфавита. Просто потому что слишком многие люди принимают важные решения, основываясь на интуиции, тайных пророчествах, расположении звёзд и других подобных. Я тщательно изучил теорию игр, и теперь хочу рассказать вам о её основах. Возможно, это добавит здравого смысла в вашу жизнь.

1. Дилемма заключенного

Берто и Роберт были арестованы за ограбление банка, не сумев правильно использовать для побега угнанный автомобиль. Полиция не может доказать, что именно они ограбили банк, но поймала их с поличным в украденном автомобиле. Их развели по разным комнатам и каждому предложили сделку: сдать сообщника и отправить его за решетку на 10 лет, а самому выйти на свободу. Но если они оба сдадут друг друга, то каждый получит по 7 лет. Если же никто ничего не скажет, то оба сядут на 2 года только за угон автомобиля.

Получается, что, если Берто молчит, но Роберт сдает его, Берто садится в тюрьму на 10 лет, а Роберт выходит на свободу.

Каждый заключенный - игрок, и выгода каждого может быть представлена в виде «формулы» (что получат они оба, что получит другой). Например, если я ударю тебя, моя выигрышная схема будет выглядеть так (я получаю грубую победу, ты страдаешь от сильной боли). Поскольку у каждого заключенного есть два варианта, мы можем представить результаты в таблице.

Практическое применение: Выявление социопатов

Здесь мы видим основное применение теории игр: выявление социопатов, думающих лишь о себе. Настоящая теория игр - это мощный аналитический инструмент, а дилетантство часто служит красным флагом, с головой выдающим человека, лишенного понятия чести. Люди, делающие расчеты интуитивно, считают, что лучше поступить некрасиво, потому что это приведет к более короткому тюремному сроку независимо от того, как поступит другой игрок. Технически это правильно, но только если вы недальновидный человек, ставящий цифры выше человеческих жизней. Именно поэтому теория игра так популярна в сфере финансов.

Настоящая проблема дилеммы заключенного в том, что она игнорирует данные. Например, в ней не рассматривается возможность вашей встречи с друзьями, родственниками, или даже кредиторами человека, которого вы посадили в тюрьму на 10 лет.

Хуже всего то, что все участники дилеммы заключенного действуют так, как будто никогда не слышали ней.

А лучший ход - хранить молчание, и через два года вместе с хорошим другом пользоваться общими деньгами.

2. Доминирующая стратегия

Это ситуация, при которой ваши действия дают наибольший выигрыш, независимо от действий оппонента. Что бы ни происходило - вы всё сделали правильно. Вот почему многие люди при «дилемме заключенного» считают: предательство приводит к «наилучшему» результату независимо от того, что делает другой человек, а игнорирование действительности, свойственное этому методу, заставляет всё выглядеть супер-просто.

Большинство игр, в которые мы играем, не имеет строго доминирующих стратегий, потому что иначе они были бы просто ужасны. Представьте, что вы всегда делали бы одно и то же. В игре «камень-ножницы-бумага» нет никакой доминирующей стратегии. Но если бы вы играли с человеком, у которого на руках надеты прихватки, и он мог показать только камень или бумагу, у вас была бы доминирующая стратегия: бумага. Ваша бумага обернет его камень или приведет к ничьей, и вы не сможете проиграть, потому что соперник не может показать ножницы. Теперь, когда у вас есть доминирующая стратегия, нужно быть дураком, чтобы попробовать что-нибудь другое.

3. Битва полов

Игры интереснее, когда у них нет строго доминирующей стратегии. Например, битва полов. Анджали и Борислав идут на свидание, но не могут выбрать между балетом и боксом. Анджали любит бокс, потому что ей нравится, когда льется кровь на радость орущей толпе зрителей, считающих себя цивилизованными только потому, что они заплатили за чьи-то разбитые головы.

Борислав хочет смотреть балет, потому что он понимает, что балерины проходят через огромное количество травм и сложнейших тренировок, зная, что одна травма может положить конец всему. Артисты балета - величайшие спортсмены на Земле. Балерина может ударить вас ногой в голову, но никогда этого не сделает, потому что ее нога стоит гораздо дороже вашего лица.

Каждый из них хочет пойти на своё любимое мероприятие, но они не хотят наслаждаться им в одиночестве, таким образом, получаем схему их выигрыша: наибольшее значение - делать то, что им нравится, наименьшее значение - просто быть с другим человеком, и ноль - быть в одиночестве.

Некоторые люди предлагают упрямо балансировать на грани войны: если вы, несмотря ни на что, делаете то, что хотите, другой человек должен подстроиться под ваш выбор или потерять все. Как я уже говорил, упрощённая теория игр отлично выявляет глупцов.

Практическое применение: Избегайте острых углов

Конечно, и у этой стратегии есть свои значительные недостатки. Прежде всего, если вы относитесь к вашим свиданиям как к «битве полов», она не сработает. Расстаньтесь, чтобы каждый из вас мог найти человека, который ему понравится. А вторая проблема заключается в том, что в этой ситуации участники настолько не уверены в себе, что не могут этого сделать.

По-настоящему выигрышная стратегия для каждого - делать то, что они хотят, а после, или на следующий день, когда они будут свободны, пойти вместе в кафе. Или же чередовать бокс и балет, пока в мире развлечений не произойдет революция и не будет изобретен боксерский балет.

4. Равновесие Нэша

Равновесие Нэша - это набор ходов, где никто не хочет сделать что-то по-другому после свершившегося факта. И если мы сможем заставить это работать, теория игр заменит всю философскую, религиозную, и финансовую систему на планете, потому что «желание не прогореть» стало для человечества более мощной движущей силой, чем огонь.

Давайте быстро поделим 100$. Вы и я решаем, сколько из сотни мы требуем и одновременно озвучиваем суммы. Если наша общая сумма меньше ста, каждый получает то, что хотел. Если общее количество больше ста, тот, кто попросил наименьшее количество, получает желаемую сумму, а более жадный человек получает то, что осталось. Если мы просим одинаковую сумму, каждый получает 50 $. Сколько вы попросите? Как вы разделите деньги? Существует единственный выигрышный ход.

Требование 51 $ даст вам максимальную сумму независимо от того, что выберет ваш противник. Если он попросит больше, вы получите 51 $. Если он попросит 50 $ или 51 $, вы получите 50 $. И если он попросит меньше 50 $, вы получите 51 $. В любом случае нет никакого другого варианта, который принесет вам больше денег, чем этот. Равновесие Нэша - ситуация, в которой мы оба выбираем 51 $.

Практическое применение: сначала думайте

В этом вся суть теории игр. Не обязательно выиграть и тем более навредить другим игрокам, но обязательно сделать лучший для себя ход, независимо от того, что подготовят для вас окружающие. И даже лучше, если этот ход будет выгоден и для других игроков. Это своего рода математика, которая могла бы изменить общество.

Интересный вариант этой идеи - распитие спиртного, которое можно назвать Равновесием Нэша с временной зависимостью. Когда вы достаточно много пьете, то не заботитесь о поступках других людей независимо от того, что они делают, но на следующий день вы очень жалеете, что не поступили иначе.

5. Игра в орлянку

В орлянке участвуют Игрок 1 и Игрок 2. Каждый игрок одновременно выбирает орла или решку. Если они угадывают, Игрок 1 получает пенс Игрока 2. Если же нет - Игрок 2 получает монету Игрока 1.

Выигрышная матрица проста…

…оптимальная стратегия: играйте полностью наугад. Это сложнее, чем вы думаете, потому что выбор должен быть абсолютно случайным. Если у вас есть предпочтения орла или решки, противник может использовать его, чтобы забрать ваши деньги.

Конечно, настоящая проблема здесь заключается в том, что было бы намного лучше, если бы они просто бросали один пенс друг в друга. В результате их прибыль была бы такой же, а полученная травма могла бы помочь этим несчастным людям почувствовать что-то, кроме ужасной скуки. Ведь это худшая игра из существующих когда-либо. И это идеальная модель для серии пенальти.

Практическое применение: Пенальти

В футболе, хоккее и многих других играх, дополнительное время - это серия пенальти. И они были бы интереснее, если бы строились на том, сколько раз игроки в полной форме смогут сделать «колесо», потому что это, по крайней мере, было бы показателем их физических способностей и на это было бы забавно посмотреть. Вратари не могут чётко определить движение мяча или шайбы в самом начале их движения, потому что, к огромному сожалению, в наших спортивных состязаниях роботы все еще не участвуют. Вратарь должен выбрать левое или правое направление и надеяться, что его выбор совпадет с выбором противника, бьющего по воротам. В этом есть что-то общее с игрой в монетку.

Однако обратите внимание, что это не идеальный пример сходства с игрой в орла и решку, потому что даже при правильном выборе направления вратарь может не поймать мяч, а нападающий может не попасть по воротам.

Итак, каково же наше заключение согласно теории игр? Игры с мячом должны заканчиваться способом «мультимяча», где каждую минуту игрокам один на один выводится дополнительный мяч/шайба, до получения одной из сторон определенного результата, который был показателем настоящего мастерства игроков, а не эффектным случайным совпадением.

В конце концов, теория игр должна использоваться для того, чтобы сделать игру умнее. А значит лучше.

Использование математических методов, к числу которых относится теория игр, в анализе экономических процессов позволяет выявить такие тенденции, взаимосвязи, которые остаются скрытыми при применении других методов.

В экономической действительности на каждом шагу встречаются ситуации, когда отдельные люди, фирмы или целые страны пытаются обойти друг друга в борьбе за первенство. Такими ситуациями и занимается ветвь экономического анализа, называемая "теория игр".

"Теория игр изучает то, каким образом двое или более игроков выбирают отдельные действия или целые стратегии. Название этой теории настраивает на несколько отвлеченный лад, поскольку оно ассоциируется с игрой в шахматы и бридж или с ведением войн. На самом деле выводы этой дисциплины весьма глубоки. Теория игр была разработана выходцем из Венгрии, гениальным математиком Джоном фон Нейманом (1903-1957). Эта теория сравнительно молодая математическая дисциплина.

В дальнейшем теория игр была дополнена такими разработками, как равновесие Нэша (по имени математика Джона Нэша). Равновесие по Нэшу возникает, когда ни один из игроков не может улучшить своего положения, если его противники не изменят своих стратегий. Стратегия каждого игрока является лучшим ответом на стратегию его противника. Иногда равновесие по Нэшу называют также некооперативным равновесием, поскольку участники совершают свой выбор, не вступая ни в какие соглашения друг с другом и не принимая во внимание никаких других соображений (интересы общества или интересы других сторон), кроме собственной выгоды.

Равновесие совершенно конкурентного рынка также является равновесием по Нэшу, или некооперативным равновесием, при котором каждая фирма и каждый потребитель принимают решения исходя из уже существующих цен как не зависящих от его воли. Мы уже знаем, что в условиях, когда каждая фирма стремится максимизировать прибыль, а каждый потребитель - полезность, равновесие возникает, когда цены равны предельным издержкам, а прибыль - нулю. " Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 200 с.

Вспомним концепцию "невидимой руки" Адама Смита: "Преследуя собственные интересы, он (индивид) часто в большей степени способствует процветанию общества, чем если бы он к этому сознательно стремился" Смит А. Исследование о природе и причинах богатства народов // Антология экономической классики. - М.: Эконов-ключ, 19931. Парадокс "невидимой руки" заключается в том, что, хотя каждый и действует как самостоятельная сила, в конечном итоге общество остается в выигрыше. При этом конкурентное равновесие является равновесием по Нэшу еще и в том смысле, что ни у кого нет повода изменять свою стратегию, если и все остальные придерживаются своей. В условиях совершенно конкурентной экономики некооперативное поведение является экономически эффективным с точки зрения интересов общества.

Напротив, когда члены некоторой группы решают кооперироваться и совместно прийти к монопольной цене, такое поведение нанесет ущерб экономической эффективности. Государство вынуждено создавать антимонопольное законодательство и тем самым урезонивать тех, кто пытается завысить цены и поделить рынок. Однако не всегда разобщенность в поведении является экономически эффективной. Соперничество между фирмами ведет к низким ценам и конкурентному объему производства. "Невидимая рука" оказывает почти волшебное воздействие на совершенно конкурентные рынки: эффективное распределение ресурсов происходит в результате действий индивидов, стремящихся к максимизации прибыли.

Однако во многих случаях некооперативное поведение приводит к экономической неэффективности или даже представляет угрозу для общества (например, гонка вооружений). Некооперативное поведение как со стороны США, так и со стороны СССР заставляло обе стороны вкладывать огромные средства в военную область и привело к созданию арсенала, состоящего из почти 100000 ядерных боеголовок. Существует также опасение, что чрезмерная доступность оружия в Америке может стать причиной своего рода внутренней гонки вооружений. Одни люди вооружают себя против других - и этот "бег наперегонки" может продолжаться до бесконечности. Здесь в действие вступает вполне "видимая рука", направляющая это разрушительное состязание и не имеющая ничего общего с "невидимой рукой" Адама Смита. Еще один важный экономический пример - "игры в загрязнения" (окружающей среды). Здесь объектом нашего внимания станет такой вид побочных эффектов, как загрязнение. Если бы фирмы никогда и никого не спрашивали о том, как им поступить, любая из них скорее предпочла бы создавать загрязнения, чем устанавливать дорогостоящие очистители. Если же какая-нибудь фирма из благородных побуждений решилась бы уменьшить вредные выбросы, то издержки, а следовательно, и цены на ее продукцию, возросли бы, а спрос упал. Вполне возможно, эта фирма просто обанкротилась бы. Живущие в жестоком мире естественного отбора, фирмы скорее предпочтут оставаться в условиях равновесия по Нэшу Ни одной фирме не удастся повысить прибыль, уменьшая загрязнение.

Вступив в смертоносную экономическую игру, каждая неконтролируемая государством и максимизирующая прибыль сталелитейная фирма будет производить загрязнения воды и воздуха. Если какая-либо фирма попытается очищать свои выбросы, то тем самым она будет вынуждена повысить цены и потерпеть убытки. Некооперативное поведение установит равновесие по Нэшу в условиях высоких выбросов. Правительство может предпринять меры, с тем чтобы равновесие переместилось. В этом положении загрязнение будет незначительным, прибыли же останутся теми же. Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 203 с.

Игры в загрязнения - один из случаев того, как механизм действия "невидимой руки" не срабатывает. Это ситуация, когда равновесие по Нэшу неэффективно. Иногда подобные неконтролируемые игры становятся угрожающими, и здесь может вмешаться правительство. Установив систему штрафов и квот на выбросы, правительство может побудить фирмы выбрать исход, соответствующий низкому уровню загрязнения. Фирмы зарабатывают ровно столько же, сколько и прежде, при больших выбросах, мир же становится несколько чище.

Теория игр применима и к макроэкономической политике. Экономисты и политики в США часто поругивают существующую денежно-кредитную и налогово-бюджетную политику: дефицит федерального бюджета слишком велик и уменьшает национальные сбережения, тогда как кредитно-денежная политика порождает такие процентные ставки, которые ограничивают инвестиции. Более того, этот "бюджетно-денежный синдром" является свойством макроэкономического "ландшафта" уже более десяти лет. Почему же Америка так упорно проводит оба вида политики, хотя ни один из них нежелателен?

Можно попытаться объяснить этот синдром с точки зрения теории игр. Стало привычным в современной экономике разделять данные разновидности политики. Центральный банк Америки - Федеральная резервная система - определяет независимо от правительства денежно-кредитную политику, назначая процентные ставки. Налогово-бюджетной политикой, налогами и расходами - заведуют законодательные и исполнительные власти. Однако каждый из этих видов политики имеет разные цели. Центральный банк стремится ограничить рост предложения денег и обеспечить низкие темпы инфляции.

Артур Берне, специалист по экономическим циклам и бывший глава ФРС, писал: "Чиновники центрального банка склонны, в силу традиции, а возможно, и в силу личного склада, держать цены в узде. Их ненависть к инфляции еще более разгорается после общения с единомышленниками из частных финансовых кругов". Власти же, заведующие налогово-бюджетной политикой, больше озабочены такими вопросами, как полная занятость, собственная популярность, сохранение низких налогов и грядущие выборы.

Лица, проводящие налогово-бюджетную политику, предпочитают минимально возможную величину безработицы, увеличение государственных расходов в сочетании с понижением налогов и не заботятся об инфляции и частных инвестициях.

В бюджетно-денежной игре кооперативная стратегия приводит к умеренной инфляции и безработице в сочетании с большим объемом инвестиций, стимулирующим экономический рост. Однако желание уменьшить безработицу и реализовать социальные программы побуждает руководство страны прибегать к увеличению бюджетного дефицита, тогда как неприятие инфляции заставляет центральный банк поднимать процентные ставки. Некооперативное равновесие означает наименьший возможный объем инвестиций.

Они выбирают "большой бюджетный дефицит". С другой стороны, центральный банк пытается уменьшить инфляцию, не подвержен влиянию профсоюзов и лоббирующих группировок и выбирает "высокие процентные ставки". Результатом является некооперативное равновесие с умеренными величинами инфляции и безработицы, но с низким уровнем инвестиций.

Возможно, что именно благодаря "бюджетно-денежной игре" президент Клинтон выдвинул экономическую программу по уменьшению бюджетного дефицита, снижению процентных ставок и расширению объема инвестиций.

Существуют разные способы описания игр. Один из них состоит в том, что рассматриваются все возможные стратегии игроков и определяются платежи, соответствующие любой возможной комбинации стратегий игроков. Игра, описанная таким способом, называется игрой в нормальной форме.

Нормальная форма игры двух участников состоит из двух платежных матриц, показывающих, какую сумму получит каждый из игроков при любой из возможных пар стратегий. Обычно эти матрицы выражают в форме единой матрицы, которую называют биматрицей. Элементами биматрицы являются пары чисел, первое из которых определяет величину выигрыша первого игрока, а второе - величину выигрыша второго. Первый игрок (государство) выбирает одну из m стратегий, при этом каждой стратегии соответствует строка матрицы I (i= 1,…,m). Второй игрок (бизнес) выбирает одну из n стратегий, при этом каждой стратегии соответствует столбец матрицы j (j= 1,…,n). Пара чисел на пересечении строки и столбца, которые соответствуют стратегиям, выбранным игроками, показывает величину выигрыша каждого из них. В общем случае, если игрок I выбирает стратегию i а игрок II - стратегию j, то выигрыши первого и второго игроков соответственно равны и (i= 1,…,m; j= 1,…,n), где m,n - число конечных стратегий соответственно игроков I и II. Предполагается, что каждому из игроков известны все элементы биматрицы выигрышей. В этом случае их стратегия называется определенной и имеет конечное число вариантов.

Если игроку неизвестны какие-либо варианты стратегий противника (элементы матрицы), то игра называется неопределенной и может иметь бесконечное число вариантов (стратегий).

Существуют и другие классы игр, где игроки выигрывают и проигрывают одновременно.

Антагонистические игры двух лиц связаны с тем, что один из игроков выигрывает ровно столько, сколько проигрывает другой. В таких играх интересы ее игроков прямо противоположны друг другу.

В качестве примера рассмотрим игру, в которой участвуют два игрока, каждый из них имеет по две стратегии. Выигрыши каждого из игроков определяются такими правилами: если оба игрока выбирают стратегии с одинаковыми номерами (игрок I - , игрок II -), то первый игрок выигрывает, а второй проигрывает (государство повышает налоги - бизнес платит их, т.е. выигрыш государства определяет проигрыш бизнеса); если оба игрока выбирают разные стратегии (игрок I - і 1 игрок II - j 2 то первый проигрывает, а второй выигрывает (государство повышает налоги на бизнес - бизнес уклоняется от них; проигрыш государства - выигрыш бизнеса).

Теория игр есть теория математических моделей таких явлений, в которых участники ("игроки") имеют различные интересы и располагают для достижения своих целей более или менее свободно выбираемыми путями (стратегиями). В большинстве работ по теории игр предполагается, что интересы участников игры поддаются количественному измерению и являются вещественными функциями ситуаций, т.е. набором стратегий, получаемых при выборе каждым из игроков некоторой своей стратегии. Для получения результатов необходимо рассматривать те или иные классы игр, выделенные некоторыми ограничительными предположениями. Такие ограничения можно накладывать несколькими путями.

Можно выделить несколько способов (путей) наложения ограничений.

1. Ограничения возможностей взаимоотношений игроков между собой. Простейшим случаем является такой, когда игроки действуют совершенно разобщено и не могут сознательно помогать или мешать друг другу действием или бездействием, информацией или дезинформацией. Такое положение дел неизбежно наступает, когда в игре участвуют только два игрока (государство и бизнес), имеющие диаметрально противоположные интересы: увеличение выигрыша одного из них означает уменьшение выигрыша другого, и притом на ту же сумму, при условии, что выигрыши обоих игроков выражаются в одинаковых единицах измерения. Не нарушая общности, можно принять суммарный выигрыш обоих игроков равным нулю и трактовать выигрыш одного из них как проигрыш другого.

Эти игры называют антагонистическими (или играми с нулевой суммой, или нулевыми играми двух лиц). Они предполагают, что никаких взаимоотношений между игроками, никаких компромиссов, обменов информацией и другими ресурсами не может быть по самой своей природе вещей, по сути игры, поскольку каждое сообщение, получаемое игроком о намерениях другого, может лишь увеличить выигрыш первого игрока и тем самым увеличить проигрыш его противника.

Таким образом, сделаем вывод, что в антагонистических играх игрокам можно не иметь непосредственных взаимоотношений и вместе с тем находиться в состоянии игры (противостоянии) по отношению друг к другу.

2. Ограничения или упрощающие предположения на множестве стратегий игроков. В наиболее простом случае эти множества стратегий конечны, что устраняет ситуации, связанные с возможными совпадениями (сходимостями) в множествах стратегий, избавляет от необходимости вводить на множествах какую-либо технологию.

Игры, в которых множества стратегий каждого из игроков конечны, называются конечными играми.

3. Предложения о внутреннем строении каждой стратегии, т.е. о ее содержании. Так, например, в качестве стратегий можно рассматривать функции времени (непрерывного или дискретного), значениями которых являются действия игрока в соответствующий момент. Эти и подобные им игры принято называть динамическими (позиционными).

Ограничениями стратегий игроков могут быть и их целевые функции, т.е. определение тех целей, на реализацию которых направлена та или иная стратегия. Можно предположить, что ограничения на стратегию связаны и со способами достижения этих целей в тех или иных временных интервалах, например стремление бизнеса добиться снижения размеров обязательных продаж валютной выручки в течение ближайших трех месяцев (или одного года). Если же предположений о природе стратегий не делается, то они считаются некоторым абстрактным множеством. Такого рода игры в самой простой постановке вопроса называются играми в нормальной форме.

Конечные антагонистические игры в нормальной форме называются матричными. Это название объясняется возможностью следующей интерпретации игр такого типа. Будем понимать стратегии первого игрока (игрок I - государство) как строки некоторой матрицы, а стратегии второго игрока (игрок II - бизнес) - как ее столбцы. Для краткости стратегиями игроков называют не сами строки или столбцы матрицы, а их номера. Тогда ситуациями игры оказываются клетки этой матрицы, стоящие на пересечениях каждой строки с каждым из столбцов. Заполнив эти клетки-ситуации числами, описывающими выигрыши игрока I в этих ситуациях, мы завершим задание игры. Полученная матрица называется матрицей выигрыша игры, или матрицей игры. Ввиду антагонистичности матричной игры выигрыш игрока II в каждой ситуации вполне определяется выигрышем игрока I в этой ситуации, отличаясь от него только знаком. Поэтому дополнительных указаний о функции выигрыша игрока II в матричной игре не требуется.

Матрицу, имеющую m строк и n столбцов, называют (m*n) - матрицей, а игру с этой матрицей - (m*n) - игрой.

Процесс (m*n) - игры с матрицей можно представить следующим образом:

Игрок I фиксирует номер строки i, а игрок II - номер столбца j, после чего первый игрок получает от своего противника сумму

Целью игрока I в матричной игре является получение максимального выигрыша, цель игрока II состоит в том, чтобы дать игроку I минимальный выигрыш.

Пусть игрок I (государство) выбирает некоторую свою стратегию i. Тогда в наихудшем случае он получит выигрыш min . В теории игр игроки предполагаются осторожными, рассчитывающими на наименее благоприятный для себя поворот событий.

Такое наименее благоприятное для игрока I положение дел может наступить, например, в том случае, когда стратегия i станет известной игроку II (бизнес). Предвидя такую возможность, игрок I должен выбирать свою стратегию так, чтобы максимизировать этот минимальный выигрыш:

min = max min (I)

Значение, стоящее в правой части равенства, является гарантированным выигрышем игрока I. Игрок II (бизнес) должен выбрать такую стратегию, что

max = min max (II)

Значение, стоящее в правой части равенства, является выигрышем игрока I, больше которого он при правильных действиях противника получить не может.

Фактический выигрыш игрока I должен при разумных действиях партнеров находиться в интервале между значениями выигрыша в первом и втором случаях. Если эти значения равны, то выигрыш игрока I является вполне определенным числом, сами игры называются вполне определенными. Выигрыш игрока I называется значением игры, и он равен элементу матрицы.

У игроков могут быть дополнительные возможности - выбор своих стратегий случайно и независимо друг от друга (стратегии соответствуют строкам и столбцам матрицы). Случайный выбор игроком своих стратегий называется смешанной стра тегии этого игрока. В (m*n) - игрё смешанные стратегии игрока I определяются наборами вероятностей: X = (,…), с которыми этот игрок выбирает свои первоначальные, чистые стратегии.

В основе теории матричных игр лежит теорема Неймана активных стратегиях: "Если один из игроков придерживается своей оптимальной стратегии, то выигрыш остается неизменным и равным цене игры независимо от того, что делает другой игрок, если он не выходит за пределы своих активных стратегий (т.е. пользуется любой из них в чистом виде или смешивает их в любых пропорциях" Neumann J. Contributions to the theory of games. 1995.. - 155 с.). Отметим, что активной называется чистая стратегия игрока, входящая в его оптимальную смешанную стратегию с отличной от нуля вероятностью.

Главная цель игры - нахождение оптимальной стратегии для обоих игроков, если не с максимальным выигрышем одного из них, то тогда с минимальным проигрышем для обоих. Метод нахождения оптимальных стратегий дает часто больше, чем это необходимо для практических целей. В матричной игре не обязательно, чтобы игрок знал все свои оптимальные структуры, поскольку они все взаимозаменяемы и игроку для успешной игры, достаточно знать одну из них. Поэтому применительно к матричным играм актуальным является вопрос о нахождении хотя бы одной оптимальной стратегии для каждого из игроков.

Основная теорема о матричных играх устанавливает существование значения игры и оптимальных смешанных стратегий для обоих игроков. Оптимальная стратегия не обязана быть единичной. Это очень важный вывод, полученный на основе теории игр.

Для играющего в матричную игру субъекта характерны следующие качества:

элементы матрицы интерпретируются как денежные платежи и соответственно их выигрыш и проигрыш оцениваются в денежной форме;

каждый из игроков применяет к этим элементам функцию полезности;

в игре каждый игрок действует так, как если бы функция полезности его оппонента оказывала на матрицу точно такое же воздействие, т.е. каждый смотрит на игру "со своей колокольни".

Эти предположения приводят к играм с нулевой суммой, в которых возникают отношения кооперирования, торгов и другого типа взаимодействий между игроками как до начала игры, так и в ее процессе. Мамаева Л.Н. Институциональная экономика: Курс лекций - М.: Издательско-торговая корпорация «Дашков и К», 2012. - 210 - 211с.

Обобщение теории игр, имеющее целью включение в нее других возможностей анализа, приводит к интересным, но достаточно трудным задачам. При развитии теории игр необходимо применять функцию полезности не только к денежным исходам, но и к суммам с ожидаемыми будущими исходами. Эти предположения являются спорными, но они существуют. В данном случае мы исходим из того, что это предположение о подобной операции имеет сходство с поведением игроков в определенных ситуациях принятия решений и допускает возможность, что способ ведения игры данным игроком зависит от состояния его капитала во время ведения им игры.

Рассмотрим это на следующем примере. Пусть первый игрок к моменту начала игры G обладает капиталом в x долларов. Тогда его капитал в конце игры будет равен + x, где - получаемый им от игры фактический выигрыш. Полезность, которую он приписывает такому исходу, равна f (+ х), где f - функция полезности.

Эти несколько примеров иллюстрируют только часть огромного разнообразия результатов, которые можно получить, используя теорию игр. Данный раздел экономической теории является чрезвычайно полезным (для экономистов и других представителей общественных наук) инструментом анализа ситуаций, при которых небольшое число людей хорошо информировано и пытается перехитрить друг друга на рынках, в сфере политики или в военных действиях.

Теория игр - совокупность математических методов решения конфликтных ситуаций (столкновений интересов). В теории игр игрой называется математическая модель конфликтной ситуации. Предмет особого интереса теории игр - исследование стратегий принятия решений участников игры в условиях неопределённости. Неопределённость связана с тем, что две или более стороны преследуют противоположные цели, а результаты любого действия каждой из сторон зависят от ходов партнёра. При этом каждая из сторон стремится принимать оптимальные решения, которые реализуют поставленные цели в наибольшей степени.

Наиболее последовательно теория игр применяется в экономике, где конфликтные ситуации возникают, например, в отношениях между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Применение теории игр можно найти и в политике, социологии, биологии, военном искусстве.

Из истории теории игр

История теории игр как самостоятельной дисциплины начинается в 1944 году, когда Джон фон Нейман и Оскар Моргенштерн опубликовали книгу "Теория игр и экономическое поведение" ("Theory of Games and Economic Behavior"). Хотя примеры теории игр встречались и раньше: трактат Вавилонского Талмуда о разделе имущества умершего мужа между его жёнами, карточные игры в 18-м веке, развитие теории шахматной игры в начале 20-го века, доказательство теоремы о минимаксе того же Джона фон Неймана в 1928 году, без которой не было бы никакой теории игр.

В 50-х годах 20-го века Мелвин Дрешер и Мерил Флод из Rand Corporation первыми экспериментально применили дилемму заключённого, Джон Нэш в работах о состоянии равновесия в играх двух лиц развил понятие равновесия Нэша.

Рейнхард Сэлтен в 1965 году опубликовал книгу "Обработка олигополии в теории игр по требованию" ("Spieltheoretische Behandlung eines Oligomodells mit Nachfrageträgheit"), с которой применение теории игр в экономике получило новую движущую силу. Шагом вперёд в эволюции теории игр связан с работой Джона Мейнарда Смита "Эволюционно стабильная стратегия" ("Evolutionary Stable Strategy", 1974). Дилемма заключённого была популяризована в книге Роберта Аксельрода "Эволюция кооперации" ("The Evolution of Cooperation"), опубликованной в 1984 году. В 1994 году именно за вклад в теорию игр Нобелевской премии были удостоены Джон Нэш, Джон Харсаньи и Рейнхард Сэлтен.

Теория игр в жизни и бизнесе

Остановимся подробнее на сути кофликтной ситуации (столкновении интересов) в том смысле, как он понимается в теории игр для дальнейшего моделирования различных ситуаций в жизни и бизнесе. Пусть индивидуум находится в таком положении, которое приводит к одному из нескольких возможных исходов, причём у индивидуума имеются по отношению к этим исходам некоторые личные предпочтения. Но хотя он может до некоторой степени управлять переменными факторами, определяющими исход, он не имеет полной власти над ними. Иногда управление находится в руках нескольких индивидуумов, которые, подобно ему, имеют какие-то предпочтения по отношению к возможным исходам, но в общем случае интересы этих индивидуумов не согласуются. В других случаях конечный исход может зависеть как от случайностей (которые в юридических науках иногда именуются стихийными бедствиями), так и от других индивидуумов. Теория игр систематизирует наблюдения за такими ситуациями и формулировки общих принципов для руководства разумными действиями в таких ситуациях.

В некоторых отношениях название "теория игр" неудачно, так как наводит на мысль, что теория игр рассматривает лишь не имеющие социального значения столкновения, происходящие в салонных играх, но всё же эта теория имеет значительно более широкое значение.

О применении теории игр может дать представление следующая экономическая ситуация. Пусть имеется несколько предпринимателей, каждый из которых стремится получить максимум прибыли, имея при этом лишь ограниченную власть над переменными, определяющими эту прибыль. Предприниматель не имеет власти над переменными, которыми распоряжается другой предприниматель, но которые могут сильно влиять на доход первого. Трактовка этой ситуации как игры может вызвать следующее возражение. В игровой модели предполагается, что каждый предприниматель делает один выбор из области возможных выборов и этими единичными выборами определяются прибыли. Очевидно, что этого почти не может быть в действительности, так как при этом в промышленности не были бы нужны сложные управленческие аппараты. Просто есть ряд решений и модификаций этих решений, которые зависят от выборов, совершённых другими участниками экономической системы (игроками). Но в принципе можно вообразить, что какой-либо администратор предвидит все возможные случайности и подробно описывает действие, которое нужно предпринимать в каждом случае, вместо того чтобы решать каждую задачу по мере её возникновения.

Военный кофликт, по определению, есть столкновение интересов, в котором ни одна из сторон не распоряжается полностью переменными, определяющими исход, который решается рядом битв. Можно просто считать исход выигрышем или проигрышем и приписать им численные значения 1 и 0.

Одна из самых простых конфликтных ситуаций, которая может быть записана и решена в теории игр - дуэль, представляющая собой конфликт двух игроков 1 и 2, имеющих соответственно p и q выстрелов. Для каждого игрока существует функция, указывающая вероятность того, что выстрел игрока i в момент времени t даст попадание, которое окажется смертельным.

В итоге теория игр приходит к такой формулировке некоторого класса столкновений интересов: имеются n игроков, и каждому нужно выбрать одну возможность из стого определённого набора, причём при совершении выбора у игрока нет никаких сведений о выборах других игроков. Область возможных выборов игрока может содержать такие элементы, как "ход тузом пик", "производство танков вместо автомобилей", или в общем смысле, стратегию, определяющую все действия, которые нужно совершить во всех возможных обстоятельствах. Перед каждым игроком стоит задача: какой выбор он должен сделать, чтобы его частное влияние на исход принесло ему как можно больший выигрыш?

Математическая модель в теории игр и формализация задач

Как мы уже отмечали, игра является математической моделью конфликтной ситуации и требует наличия следующих компонент:

  1. заинтересованных сторон;
  2. возможных действий с каждой стороны;
  3. интересов сторон.

Заинтересованные в игре стороны называются игроками , каждый из них может предпринять не менее двух действий (если в распоряжении игрока только одно действие, то он фактически не участвует в игре, так как заранее известно, что он предпримет). Исход игры называется выигрышем .

Реальная конфликтная ситуация не всегда, а игра (в понятии теории игр) - всегда - протекает по определённым правилам , которые точно определяют:

  1. варианты действий игроков;
  2. объём информации каждого игрока о поведении партнёра;
  3. выигрыш, к которому приводит каждая совокупность действий.

Примерами формализованных игр могут служить футбол, карточная игра, шахматы.

Но в экономике модель поведения игроков возникает, например, когда несколько фирм стремятся занять более выгодное место на рынке, несколько лиц пытаются поделить между собой какое-либо благо (ресурсы, финансы) так, чтобы каждому досталось по возможности больше. Игроками в конфликтных ситуациях в экономике, которые можно моделировать в виде игры, являются фирмы, банки, отдельные люди и другие экономические агенты. В свою очередь в условиях войны модель игры используется, например, в выборе более лучшего оружия (из имеющегося или потенциально возможного) для разгрома противника или защиты от нападения.

Для игры характерна неопределённость результата . Причины неопределённости можно распределить по следующим группам:

  1. комбинаторные (как в шахматах);
  2. влияние случайных факторов (как в игре "орёл или решка", кости, карточные игры);
  3. стратегические (игрок не знает, какое действие предпримет противник).

Стратегией игрока называется совокупность правил, определяющих его действия при каждом ходе в зависимости от сложившейся ситуации.

Целью теории игр является определение оптимальной стратегии для каждого игрока. Определить такую стратегию - значит решить игру. Оптимальность стратегии достигается, когда один из игроков должен получить максимальный выигрыш, при том, что второй придерживается своей стратегии. А второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии.

Классификация игр

  1. Классификация по числу игроков (игра двух и более лиц). Игры двух лиц занимают центральное место во всей теории игр. Основным понятием теории игр для игры двух лиц является обобщение весьма существенной идеи равновесия, которая естественно появляется в играх двух лиц. Что же касается игр n лиц, то одна часть теории игр посвящена играм, в которых сотрудничество между игроками запрещено. В другой части теории игр n лиц предполагается, что игроки могут сотрудничать для взаимной пользы (см. далее в этом параграфе о некооперативных и кооперативных играх).
  2. Классификация по числу игроков и их стратегиям (число стратегий не менее двух, может быть бесконечностью).
  3. Классификация по количеству информации относительно прошлых ходов: игры с полной информацией и неполной информацией. Пусть есть игрок 1 - покупатель и игрок 2 - продавец. Если у игрока 1 нет полной информации о действиях игрока 2, то игрок 1 может и не различить две альтернативы, между которыми ему предстоит сделать выбор. Например, выбирая между двумя видами некоторого товара и не зная о том, что по некоторым признакам товар A хуже товара B , игрок 1 может не видеть различия между альтернативами.
  4. Классификация по принципам деления выигрыша : кооперативные, коалиционные с одной стороны и некооперативные, бескоалиционные с другой стороны. В некооперативной игре , или иначе - бескоалиционной игре , игроки выбирают стратегии одновременно, не зная, какую стратегию выберет второй игрок. Коммуникация между игроками невозможна. В кооперативной игре , или иначе - коалиционной игре , игроки могут объединяться в коалиции и предпринимать коллективные действия, чтобы увеличить свои выигрыши.
  5. Конечная игра двух лиц с нулевой суммой или антогонистическая игра – это стратегическая игра с полной информацией, в которой участвуют стороны с противоположными интересами. Анатагонистическими играми являются матричные игры .

Классический пример из теории игр - дилемма заключённого

Двух подозреваемых берут под стражу и изолируют друг от друга. Окружной прокурор убеждён, что они совершили тяжкое преступление, но не имеет достаточных доказательств, чтобы предъявить им обвинение на суде. Он говорит каждому из заключённых, что у него имеется две альтернативы: признаться в преступлении, которое по убеждению полиции он совершил, или не признаваться. Если оба не признаются, то окружной прокурор предъявит им обвинение в каком-либо незначительном преступлении, например, мелкая кража или незаконное владение оружием, и они оба получат небольшое наказание. Если они оба признаются, то будут подлежать судебной ответственности, но он не потребует самого строгого приговора. Если же один признается, а другой нет, то признавшемуся приговор будет смягчён за выдачу сообщника, в то время как упорствующий получит "на полную катушку".

Если эту стратегическую задачу сформулировать в сроках заключения, то она сводится к следующему:

Таким образом, если оба заключённых не признаются, они получат по 1 году каждый. Если оба признаются, то каждый получит по 8 лет. А если один признается, другой не признается, то тот, который признался отделается тремя месяцами заключения, а тот, который не признается, получит 10 лет. Приведённая выше матрица правильно отражает дилемму заключённого: перед каждым стоит вопрос - признаться или не признаться. Игра, которую окружной прокурор предлагает заключённым, представляет собой некооперативную игру или иначе - бескоалиционную игру . Если бы оба заключённых имели возможность сотрудничать (то есть игра была бы кооперативной или иначе коалиционной игрой ), то оба не признались бы и получили по году тюрьмы каждый.

Примеры использования математических средств теории игр

Переходим теперь к рассмотрению решений примеров распространённых классов игр, для которых в теории игр существуют методы исследования и решения.

Пример формализации некооперативной (бескоалиционной) игры двух лиц

В предыдущем параграфе мы уже рассмотрели пример некооперативной (бескоалиционной) игры (дилемма заключённого). Давайте закрепим наши навыки. Для этого подойдёт также классический сюжет, навеянный "Приключениями Шерлока Холмса" Артура Конан Дойля. Можно, конечно, возразить: пример не из жизни, а из литературы, но ведь Конан Дойль не зарекомендовал себя как писатель-фантаст! Классический ещё и потому, что задание выполнено Оскаром Моргенштерном, как мы уже установили - одним из основателей теории игр.

Пример 1. Будет приведено сокращённое изложение фрагмента одного из "Приключений Шерлока Холмса". Согласно известным понятиям теории игр составить модель конфликтной ситуации и формально записать игру.

Шерлок Холмс намерен отправиться из Лондона в Дувр с дальнейшей целю попасть на континент (европейский), чтобы спастись от профессора Мориарти, который преследует его. Сев в поезд, он увидел на вокзальной платформе профессора Мориарти. Шерлок Холмс допускает, что Мориарти может выбрать особый поезд и обогнать его. У Шерлока Холмса две альтернативы: продолжать поездку до Дувра или сойти на станции Кентерберри, являющейся единственной промежуточной станцией на его маршруте. Мы принимаем, что его противник достаточно разумен, чтобы определить возможности Холмса, поэтому перед ним те же две альтернативы. Оба противника должны выбрать станцию, чтобы сойти на ней с поезда, не зная, какое решение примет каждый из них. Если в результате принятия решения оба окажутся на одной и той же станции, то можно однозначно считать, что Шерлок Холмс будет убит профессором Мориарти. Если же Шерлок Холмс благополучно доберётся до Дувра, то он будет спасён.

Решение. Героев Конан Дойля можем рассматривать как участников игры, то есть игроков. В распоряжении каждого игрока i (i =1,2) две чистые стратегии:

  • сойти в Дувре (стратегия s i1 (i =1,2) );
  • сойти на промежуточной станции (стратегия s i2 (i =1,2) )

В зависимости от того, какую из двух стратегий выберет каждый из двух игроков, будет создана особая комбинация стратегий как пара s = (s 1 , s 2 ) .

Каждой комбинации можно поставить в соответствие событие - исход попытки убийства Шерлока Холмса профессором Мориарти. Составляем матрицу данной игры с возможными событиями.

Под каждым из событий указан индекс, означающий приобретение профессора Мориарти, и рассчитываемый в зависимости от спасения Холмса. Оба героя выбирают стратегию одновременно, не зная, что выберет противник. Таким образом, игра является некооперативной, поскольку, во-первых, игроки находятся в разных поездах, а во-вторых, имеют противоположные интересы.

Пример формализации и решения кооперативной (коалиционной) игры n лиц

В этом пункте практическая часть, то есть ход решения примера задачи, будет предварена теоретической частью, в которой будем знакомиться с понятиями теории игр для решения кооперативных (бескоалиционных) игр. Для этой задачи теория игр предлагает:

  • характеристическую функцию (если говорить упрощённо, она отражает величину выгоды объединения игроков в коалицию);
  • понятие аддитивности (свойства величин, состоящее в том, что значение величины, соответствующее целому объекту, равно сумме значений величин, соответствующих его частям, в некотором классе разбиений объекта на части) и супераддитивности (значение величины, соответствующее целому объекту, больше суммы значений величин, соответствующих его частям) характеристической функции.

Супераддитивность характеристической функции говорит о том, что объединение в коалиции выгодна игрокам, так как в этом случае величина выигрыша коалиции увеличивается с увеличением числа игроков.

Для формализации игры нам нужно ввести формальные обозначения вышеназванных понятий.

Для игры n обозначим множество всех её игроков как N = {1,2,...,n} Любое непустое подмножество множества N обозначим как Т (включая само N и все подмножества, состоящие из одного элемента). На сайте есть занятие "Множества и операции над множествами ", которое при переходе по ссылке открывается в новом окне.

Характеристическая функция обозначается как v и область её определения состоит из возможных подмножеств множества N . v (T ) - значение характеристической функции для того или иного подмножества, например, доход, полученный коалицией, в том числе, возможно, состоящей из одного игрока. Это важно по той причине, что теория игр требует проверить наличие супераддитивности для значений характеристической функции всех непересекающихся коалиций.

Для двух непустых коалиций из подмножеств T 1 и T 2 аддитивность характеристической функции кооперативной (коалиционной) игры записывается так:

А супераддитивность так:

Пример 2. Трое студентов музыкальной школы подрабатывают в разных клубах, свою выручку они получают от посетителей клубов. Установить, выгодно ли им объединять свои силы (если да, то с какими условиями), используя понятия теории игр для решения кооперативных игр n лиц, при следующих исходных данных.

В среднем их выручка за один вечер составляла:

  • у скрипача 600 единиц;
  • у гитариста 700 единиц;
  • у певицы 900 единиц.

Пытаясь увеличить выручку, студенты в течение нескольких месяцев создавали различные группы. Результаты показали, что, объединившись, они могут увеличить свою выручку за вечер следующим образом:

  • скрипач + гитарист зарабатывали 1500 единиц;
  • скрипач + певица зарабатывали 1800 единиц;
  • гитарист + певица зарабатывали 1900 единиц;
  • скрипач + гитарист + певица зарабатывали 3000 единиц.

Решение. В этом примере число участников игры n = 3 , следовательно, область определения характеристической функции игры состоит из 2³ = 8 возможных подмножеств множества всех игроков. Перечислим все возможные коалиции T :

  • коалиции из одного элемента, каждая из которых состоит из одного игрока - музыканта: T {1} , T {2} , T {3} ;
  • коалиции из двух элементов: T {1,2} , T {1,3} , T {2,3} ;
  • коалиция из трёх элементов: T {1,2,3} .

Каждому из игроков присвоим порядковый номер:

  • скрипач - 1-й игрок;
  • гитарист - 2-й игрок;
  • певица - 3-й игрок.

По данным задачи определим характеристическую функцию игры v :

v(T{1}) = 600 ; v(T{2}) = 700 ; v(T{3}) = 900 ; эти значения характеристической функции определены исходя из выигрышей соответственно первого, второго и третьего игроков, когда они не объединяются в коалиции;

v(T{1,2}) = 1500 ; v(T{1,3}) = 1800 ; v(T{2,3}) = 1900 ; эти значения характеристической функции определены по выручке каждой пары игроков, объединившихся в коалиции;

v(T{1,2,3}) = 3000 ; это значение характеристической функции определено по средней выручке в случае, когда игроки объединялись в тройки.

Таким образом, мы перечислили все возможные коалиции игроков, их получилось восемь, как и должно быть, так как область определения характеристической функции игры состоит именно из восьми возможных подмножеств множества всех игроков. Что и требует теория игр, так как нам нужно проверить наличие супераддитивности для значений характеристической функции всех непересекающихся коалиций.

Как выполняются условия супераддитивности в этом примере? Определим, как игроки образуют непересекающиеся коалиции T 1 и T 2 . Если часть игроков входят в коалицию T 1 , то все остальные игроки входят в коалицию T 2 и по определению эта коалиция образуется как разность всего множества игроков и множества T 1 . Тогда, если T 1 - коалиция из одного игрока, то в коалиции T 2 будут второй и третий игроки, если в коалиции T 1 будут первый и третий игроки, то коалиция T 2 будет состоять только из второго игрока, и так далее.

И кибернетики , особенно с проявлением интереса к интеллектуальным агентам .

История

Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии , которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в. А. Курно и Ж. Бертраном . В начале XX в. Э. Ласкер , Э. Цермело, Э. Борель выдвигают идею математической теории конфликта интересов.

Математическая теория игр берёт своё начало из неоклассической экономики . Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение» (англ. Theory of Games and Economic Behavior ).

Эта область математики нашла некоторое отражение в общественной культуре. В 1998 году американская писательница и журналистка Сильвия Назар издала книгу о судьбе Джона Нэша , нобелевского лауреата по экономике и учёного в области теории игр; а в по мотивам книги был снят фильм «Игры разума ». Некоторые американские телевизионные шоу, например, «Friend or Foe », «Alias» или «NUMB3RS», периодически ссылаются на теорию в своих эпизодах.

Математическая теория игр сейчас бурно развивается, рассматриваются динамические игры. Однако математический аппарат теории игр затратен . Его применяют для оправданных задач: политика, экономика монополий и распределения рыночной власти и т. п. Ряд известных ученых стали Нобелевскими лауреатами по экономике за вклад в развитие теории игр, которая описывает социально-экономические процессы. Дж. Нэш , благодаря своим исследованиям в теории игр, стал одним из ведущих специалистов в области ведения «холодной войны» , что подтверждает масштабность задач, которыми занимается теория игр.

Представление игр

Игры представляют собой строго определённые математические объекты. Игра образуется игроками, набором стратегий для каждого игрока и указания выигрышей, или платежей , игроков для каждой комбинации стратегий. Большинство кооперативных игр описываются характеристической функцией, в то время как для остальных видов чаще используют нормальную или экстенсивную форму. Характеризующие признаки игры как математической модели ситуации:

  1. наличие нескольких участников;
  2. неопределенность поведения участников, связанная с наличием у каждого из них нескольких вариантов действий;
  3. различие (несовпадение) интересов участников;
  4. взаимосвязанность поведения участников, поскольку результат, получаемый каждым из них, зависит от поведения всех участников;
  5. наличие правил поведения, известных всем участникам.

Экстенсивная форма

Основная статья: Экстенсивная форма игры

Игры в экстенсивной, или расширенной, форме представляются в виде ориентированного дерева , где каждая вершина соответствует ситуации выбора игроком своей стратегии. Каждому игроку сопоставлен целый уровень вершин. Платежи записываются внизу дерева, под каждой листовой вершиной .

На рисунке слева - игра для двух игроков. Игрок 1 ходит первым и выбирает стратегию F или U. Игрок 2 анализирует свою позицию и решает - выбрать стратегию A или R. Скорее всего первый игрок выберет U, а второй - A (для каждого из них это оптимальные стратегии ); тогда они получат соответственно 8 и 2 очка.

Экстенсивная форма очень наглядна, с её помощью особенно удобно представлять игры с более чем двумя игроками и игры с последовательными ходами. Если же участники делают одновременные ходы, то соответствующие вершины либо соединяются пунктиром, либо обводятся сплошной линией.

Нормальная форма

Игрок 2
стратегия 1
Игрок 2
стратегия 2
Игрок 1
стратегия 1
4 , 3 –1 , –1
Игрок 1
стратегия 2
0 , 0 3 , 4
Нормальная форма для игры с 2 игроками, у каждого из которых по 2 стратегии.

В нормальной, или стратегической, форме игра описывается платёжной матрицей . Каждая сторона (точнее, измерение) матрицы - это игрок, строки определяют стратегии первого игрока, а столбцы - второго. На пересечении двух стратегий можно увидеть выигрыши, которые получат игроки. В примере справа, если игрок 1 выбирает первую стратегию, а второй игрок - вторую стратегию, то на пересечении мы видим (−1, −1), это значит, что в результате хода оба игрока потеряли по одному очку.

Игроки выбирали стратегии с максимальным для себя результатом, но проиграли из-за незнания хода другого игрока. Обычно в нормальной форме представляются игры, в которых ходы делаются одновременно , или хотя бы полагается, что все игроки не знают о том, что делают другие участники. Такие игры с неполной информацией будут рассмотрены ниже.

Характеристическая функция

В кооперативных играх с трансферабельной полезностью, то есть возможностью передачи средств от одного игрока к другому, невозможно применять понятие индивидуальных платежей . Вместо этого используют так называемую характеристическую функцию, определяющую выигрыш каждой коалиции игроков. При этом предполагается, что выигрыш пустой коалиции равен нулю.

Основания такого подхода можно найти ещё в книге фон Неймана и Моргенштерна. Изучая нормальную форму для коалиционных игр, они рассудили, что если в игре с двумя сторонами образуется коалиция C , то против неё выступает коалиция N \ C . Образуется как бы игра для двух игроков. Но так как вариантов возможных коалиций много (а именно 2 N , где N - количество игроков), то выигрыш для C будет некоторой характеристической величиной , зависящей от состава коалиции. Формально игра в такой форме (также называемая TU-игрой ) представляется парой (N, v) , где N - множество всех игроков, а v: 2 N → R - это характеристическая функция.

Подобная форма представления может быть применена для всех игр, в том числе без трансферабельной полезности. В настоящее время существуют способы перевести любую игру из нормальной формы в характеристическую, но преобразование в обратную сторону возможно не во всех случаях.

Применение теории игр

Теория игр как один из подходов в прикладной математике применяется для изучения поведения человека и животных в различных ситуациях. Первоначально теория игр начала развиваться в рамках экономической науки, позволив понять и объяснить поведение экономических агентов в различных ситуациях. Позднее область применения теории игр была расширена на другие социальные науки; в настоящее время теория игр используется для объяснения поведения людей в политологии, социологии и психологии. Теоретико-игровой анализ был впервые использован для описания поведения животных Рональдом Фишером в 30-х годах XX века (хотя даже Чарльз Дарвин использовал идеи теории игр без формального обоснования). В работе Рональда Фишера не появляется термин «теория игр». Тем не менее, работа по существу выполнена в русле теоретико-игрового анализа. Разработки, сделанные в экономике, были применены Джоном Майнардом Смитом в книге «Эволюция и теория игр». Теория игр используется не только для предсказания и объяснения поведения; были предприняты попытки использовать теорию игр для разработки теорий этичного или эталонного поведения. Экономисты и философы применяли теорию игр для лучшего понимания хорошего (достойного) поведения.

Описание и моделирование

Первоначально теория игр использовалась для описания и моделирования поведения человеческих популяций. Некоторые исследователи считают, что с помощью определения равновесия в соответствующих играх они могут предсказать поведение человеческих популяций в ситуации реальной конфронтации. Такой подход к теории игр в последнее время подвергается критике по нескольким причинам. Во-первых, предположения, используемые при моделировании, зачастую нарушаются в реальной жизни. Исследователи могут предполагать, что игроки выбирают поведения, максимизирующие их суммарную выгоду (модель экономического человека), однако на практике человеческое поведение часто не соответствует этой предпосылке. Существует множество объяснений этого феномена - нерациональность, моделирование обсуждения, и даже различные мотивы игроков (включая альтруизм). Авторы теоретико-игровых моделей возражают на это, говоря, что их предположения аналогичны подобным предположениям в физике. Поэтому даже если их предположения не всегда выполняются, теория игр может использоваться как разумная идеальная модель, по аналогии с такими же моделями в физике. Однако, на теорию игр обрушился новый вал критики, когда в результате экспериментов было выявлено, что люди не следуют равновесным стратегиям на практике. Например, в играх «Сороконожка», «Диктатор» участники часто не используют профиль стратегий, составляющий равновесие по Нэшу. Продолжаются споры о значении подобных экспериментов. Согласно другой точке зрения, равновесие по Нэшу не является предсказанием ожидаемого поведения, оно лишь объясняет, почему популяции, уже находящиеся в равновесии по Нэшу, остаются в этом состоянии. Однако вопрос о том, как эти популяции приходят к равновесию Нэша, остается открытым. Некоторые исследователи в поисках ответа на этот вопрос переключились на изучение эволюционной теории игр. Модели эволюционной теории игр предполагают ограниченную рациональность или нерациональность игроков. Несмотря на название, эволюционная теория игр занимается не столько вопросами естественного отбора биологических видов. Этот раздел теории игр изучает модели биологической и культурной эволюции, а также модели процесса обучения.

Нормативный анализ (выявление наилучшего поведения)

С другой стороны, многие исследователи рассматривают теорию игр не как инструмент предсказания поведения, но как инструмент анализа ситуаций с целью выявления наилучшего поведения для рационального игрока. Поскольку равновесие Нэша включает стратегии, являющиеся наилучшим откликом на поведение другого игрока, использование концепции равновесия Нэша для выбора поведения выглядит вполне обоснованным. Однако, и такое использование теоретико-игровых моделей подверглось критике. Во-первых, в некоторых случаях игроку выгодно выбрать стратегию, не входящую в равновесие, если он ожидает, что другие игроки также не будут следовать равновесным стратегиям. Во-вторых, знаменитая игра «Дилемма заключенного » позволяет привести ещё один контрпример. В «Дилемме заключенного » следование личным интересам приводит к тому, что оба игрока оказываются в худшей ситуации в сравнении с той, в которой они пожертвовали бы личными интересами.

Типы игр

Кооперативные и некооперативные

Игра называется кооперативной, или коалиционной , если игроки могут объединяться в группы, взяв на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.

Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом. Попытки объединить два подхода дали немалые результаты. Так называемая программа Нэша уже нашла решения некоторых кооперативных игр как ситуации равновесия некооперативных игр.

Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.

Симметричные и несимметричные

А Б
А 1, 2 0, 0
Б 0, 0 1, 2
Несимметричная игра

Основная статья: Симметричная игра

Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: «Дилемма заключённого », «Охота на оленя », «Ястребы и голуби ». В качестве несимметричных игр можно привести «Ультиматум» или «Диктатор».

В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого.

С нулевой суммой и с ненулевой суммой

Игры с нулевой суммой - особая разновидность игр с постоянной суммой , то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо - числа означают платежи игрокам - и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер , где один выигрывает все ставки других; реверси , где захватываются фишки противника; либо банальное воровство .

Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме - это делается введением фиктивного игрока , который «присваивает себе» излишек или восполняет недостаток средств.

Ещё игрой с отличной от нуля суммой является торговля , где каждый участник извлекает выгоду. Широко известным примером, где она уменьшается, является

Теория игр - теория математических моделей принятия оптимальных решений в условиях конфликта. Поскольку стороны, участвующие в большинстве конфликтов, заинтересованы в том, чтобы скрыть от противника свои намерения, принятия решений в условиях конфликта, как правило, происходит в условиях неопределенности. Наоборот, фактор неопределенности можно интерпретировать как противника субъекта, принимающего решение (тем самым принятие решений в условиях неопределенности можно понимать как принятие решений в условиях конфликта). В частности, многие утверждения математической статистики естественным образом формулируются как теоретико-игровые.

Теория игр - раздел прикладной математики, который используется в социальных науках (всего в экономике), биологии, политических науках, компьютерных науках (главным образом для искусственного интеллекта) и философии. Теория игр пытается математически зафиксировать поведение в стратегических ситуациях , в которых успех субъекта, делающего выбор зависит от выбора других участников. Если сначала развивался анализ игры, в которых один из противников выигрывает за счет других (игры с нулевой суммой), то впоследствии начали рассматривать широкий класс взаимодействий, которые были классифицированы по определенным критериям. На сегодняшний день «теория игр то вроде зонтика или универсальной теории для рациональной стороны социальных наук, где социальные можем понимать широко, включая как человеческих так не-человеческих игроков (компьютеры, животные, растения)» (Роберт Ауманн, 1987)

Эта отрасль математики получила определенное отражение в массовой культуре. В 1998 году американская писательница и журналисткаСильвия Назар опубликовала книгу о жизни Джона Нэша, нобелевского лауреата по экономике за достижения в теории игр, а в 2001 по мотивам книги снят фильм «Игры разума». (Таким образом, теория игр - одна из немногих отраслей математики в которой можно получить Нобелевскую премию). Некоторые американские телевизионные шоу, например, Friend or Foe , Alias или NUMBERS периодически используют в своих выпусках теорию игр.

Джон Нэш - математик,нобелевский лауреат известен широкой общественности благодаря фильму Игры разума.

Понятие теории игр

Логической основой теории игр является формализация трех понятий, входящих в ее определение и являются фундаментальными для всей теории:

  • Конфликт,
  • Принятие решения в конфликте,
  • Оптимальность принятого решения.

Эти понятия рассматриваются в теории игр в самом широком смысле. Их формализации отвечают содержательным представлением о соответствующих объектах.

Если назвать участников конфликта коалициями действия (обозначив их множество как D, возможные действия каждой из коалиции действия - ее стратегиями (множество всех стратегий коалиции действия K обозначается как S ), результаты конфликта - ситуациями (множество всех ситуаций обозначается как S ; считается, что каждая ситуация складывается вследствие выбора каждой из коалиций действия некоторой своей стратегии, так, что ), заинтересованные стороны - коалициями интересов (их множество - I) и, наконец, говорить о возможных преимуществах для каждой коалиции интересов K одной ситуации s " перед другим s "(этот факт обозначается как ), то конфликт в целом может быть описан как система

.

Такая система, представляющая конфликт, называется игрой . Конкретизации составляющих, задающих игру, приводят к различным классам игр.

Классификация игр

Отдельными классами бескоалиционный игр есть:

  • антагонистические игры, включая матричные игры и игры на единичном квадрате.
  • динамичные игры, в том числе дифференциальные игры,
  • рекурсивные игры,
  • игры на выживание

и другие, также относятся к бескоалиционный игр.

Математический аппарат

Теория игр широко использует различные математические методы и результаты теории вероятностей, классического анализа, функционального анализа (особенно важны теоремы о неподвижные точки), комбинаторной топологии, теории дифференциальных и интегральных уравнений, и другие. Специфика теории игр способствует разработке разнообразных математических направлений (например, теория выпуклых множеств, линейное программирование, и т.д.).

Принятием решения в теории игр считается выбор коалицией действия, или, в частности, выбор игроком некоторой своей стратегии. Этот выбор можно представить себе в виде одноразового действия и возводить формально к выбору элемента из множества. Игры с таким пониманием выбора стратегий называются играми в нормальной форме . Им противопоставляются динамичные игры, в которых выбор стратегии является процессом, который происходит в течение некоторого времени, которое сопровождается расширением и сужением возможностей, получением и потерей информации о текущем состоянии дел, и т.п.. Формально, стратегией в такой игре есть функция, определенная на множестве всех информационных состояний субъекта, принимающего решения. Некритическое использование «свободы выбора» стратегий может приводить к парадоксальным явлениям.

Оптимальность и развязки

Вопрос о формализации понятия оптимальности является весьма сложным. Единое представление об оптимальности в теории игр отсутствует, поэтому приходится рассматривать несколько принципов оптимальности. Область возможности применения каждого из принципов оптимальности, используемых в теории игр, ограничивается сравнительно узкими классами игры, или же касается ограниченных аспектов их рассмотрения.

В основе каждого из этих принципов лежат некоторые интуитивные представления о оптимум, как о чем-то «устойчивое», или «справедливое». Формализация этих представлений дает требованиях, предъявляемых к оптимуму и имеющих характер аксиом.

Среди этих требований могут оказаться такие, которые противоречат друг другу (например, можно показать конфликты, в которых стороны вынуждены довольствоваться малыми выигрышами, поскольку крупных выигрышей можно достичь только в условиях неопределенных ситуаций); поэтому в теории игр не может быть сформулирован единый принцип оптимальности.

Ситуации (или множества ситуаций), которые удовлетворяют в некоторой игре те или иные требования оптимальности, называются решениями этой игры. Так как представление об оптимальности не однозначны, имело развязки игр в разных смыслах. Создание определений решений игры, доведение их существования и разработка путей их фактического поиска - три основные вопросы современной теории игр. Близкими к ним есть вопросы о единственности решений игр, о существовании в тех или иных классах игр решений, которые имеют некоторые заранее определенные свойства.

История

Как математическая дисциплина, теория игр зародилась одновременно с теорией вероятностей в 17 веке, но в течение почти 300 лет почти не развивалась. Первой существенной работой по теории игр следует считать статью Дж. фон Неймана «К теории стратегических игр» (1928), а с выходом в свет монографии американских математиков Дж. фон Неймана и О. Моргенштерна «Теория игр и экономическое поведение» (1944), теория игр сформировалась как самостоятельная математическая дисциплина. В отличие от других отраслей математики, имеющих преимущественно физическое, или физико-технологическое происхождение, теория игр с самого начала своего развития была направлена на решение задач, возникающих в экономике (а именно в конкурентной экономике).

В дальнейшем, идеи, методы и результаты теории игр стали применять в других областях знаний, имеющих дело с конфликтами: в военном деле, в вопросах морали, при изучении массового поведения индивидов, имеющих различные интересы (например, в вопросах миграции населения, или при рассмотрении биологической борьбы за существование). Теоретико-игровые методы принятия оптимальных решений в условиях неопределенности могут иметь широкое применение в медицине, в экономическом и социальном планировании и прогнозировании, в ряде вопросов науки и техники. Иногда теорию игр относят к математическому аппарату кибернетики, или теории исследования операций.