ОРГАНИЧЕСКАЯ ХИМИЯ

Учебное пособие для студентов специальностей 271200 «Технология продовольственных продуктов специального назначения и общественного питания», 351100 «Товароведение и экспертиза товаров»

Введение

Использование человеком органических веществ и выделение их из природных источников диктовалось практическими потребностями с древних времен.

Как особая отрасль науки органическая химия возникла в начале XIXвека и к настоящему времени достигла достаточно высокого уровня развития. Из огромного количества химических соединений большая часть (свыше 5 миллионов) в своем составе содержит углерод, и почти все они относятся к органическим веществам. Большинство органических соединений – вещества, полученные с применением новых научных методов. Природные соединения на сегодня являются достаточно изученными веществами и находят новые сферы применения в жизнеобеспечении человека.

В настоящее время практически нет ни одной отрасли народного хозяйства, не связанной с органической химией: медицина, фармакология, электронная техника, авиация и космос, легкая и пищевая промышленность, сельское хозяйство и др.

Глубокое изучение природных органических веществ, таких как жиры, углеводы, белки, витамины, ферменты и другие, открыло возможность вмешиваться в обменные процессы, предлагать рациональное питание, регулировать физиологические процессы. Современная органическая химия благодаря проникновению в суть механизмов реакций, протекающих при хранении и переработке продовольственных товаров, дала возможность управлять ими.

Органические вещества нашли применение в производстве большинства товаров народного потребления, в технике, в производстве красителей, культтоваров, парфюмерии, текстильной промышленности и т.д.

Органическая химия является важной теоретической базой при изучении биохимии, физиологии, технологии производства продуктов питания, товароведения и т.д.

Классификация органических соединений

Все органические соединения по структуре углеродного скелета делятся:

1. Ациклические (алифатические) соединения, имеющие открытую углеродную цепь, как неразветвленную, так и разветвленную.

2-метилбутан

стеариновая кислота

2. Карбоциклические соединения – это соединения, содержащие циклы из углеродных атомов. Они делятся на алициклические и ароматические.

К алициклическим относятся соединения циклического строения, не обладающие ароматическими свойствами.

циклопентан

К ароматическим относятся вещества, содержащие в молекуле бензольное ядро, например:
толуол

3. Гетероциклические соединения – вещества, содержащие циклы, состоящие из атомов углерода и гетероатомов, например:

фуран пиридин

Соединения каждого раздела в свою очередь делятся на классы, которые являются производными углеводородов, в их молекулах замещены атомы водорода на различные функциональные группы:

галогенопроизводные СН 3 –Сl; спирты СН 3 –ОН; нитропроизводные СН 3 –СН 2 –NO 2 ; амины СН 3 –СН 2 –NH 2 ; сульфокислоты СН 3 –СН 2 –SO 3 H; альдегиды СН 3 –НС=О; карбоновые кислоты
и другие.

Функциональные группы определяют химические свойства органических соединений.

В зависимости от количества углеводородных радикалов, связанных с конкретным атомом углерода, последний называется первичным, вторичным, третичным и четвертичным.

Классы органических соединений

Гомологический ряд

Функциональная группа

Пример соединения

Название

Углеводороды предельные (алканы )

Углеводороды этиленовые (алкены )

Углеводороды ацетиленовые (алкины )

Диеновые углеводороды (алкадиены )

Бутадиен-1,3

Ароматические углеводороды

Метилбензол (толуол)

Альдегиды

Пропаналь

Пропанон

Окончание таблицы

Карбоновые кислоты

Пропановая кислота

Сложные эфиры

Этил ацетат (уксусно-этиловый эфир)

Этиламин

Аминокислоты

Аминоэтановая кислота (глицин)

Сульфокислоты

Бензолсульфо­кислота

Изомерия

Изомерия – это явление, когда вещества, имея одинаковый количественный и качественный состав, различаются строением, физическими и химическими свойствами.

Виды изомерии:

1. Структурная изомерия:

а) Изомерия углеродного скелета.

2-метилпропан (изобутан)

б) Изомерия положения двойной (тройной) связи.

1-бутен 2-бутен

в) Изомерия положения функциональной группы.

1-пропанол 2-пропанол

2. Стереоизомерия (пространственная):

а) Геометрическая: цис-, трансизомерия. Обусловливается различным пространственным расположением заместителей относи­тельно плоскости двойной связи; возникает из-за отсутствия вращения вокруг двойной связи.

цисбутен-2 трансбутен-2

б) Оптическая или зеркальная изомерия – это вид пространственной изомерии (стереоизомерия), зависящей от асимметрии молекулы, т.е. от пространственного расположения четырех различных атомов или групп атомов вокруг асимметрического атома углерода. Опические изомеры (стереоизомеры) относятся друг к другу, как предмет к его зеркальному изображению. Такие оптические изомеры называются антиподами, а их смеси в равных количествах того и другого называются рацемическими смесями. В этом случае они являются оптически неактивными веществами, так как каждый из изомеров вращает плоскость поляризации света в противоположную сторону. Молочная кислота имеет 2 анитипода, число которых определяется по формуле 2 n = числу изомеров, где n – число асимметричных атомов углерода.

Многие органические вещества (оксикислоты) являются оптически активными веществами. Для каждого оптически активного вещества существует своя величина удельного вращения поляризованного света.

Факт оптической активности веществ относится ко всем органическим веществам, имеющим в своем составе асимметрические атомы углерода (оксикислоты, углеводы, аминокислоты и др.).

В настоящее время известно более 10 млн органических соединений. Такое громадное количество соединений требует строгой классификации и единых международных номенклатурных правил. Этому вопросу уделяется особое внимание в связи с использованием компьютерных технологий для создания разнообразных баз данных.

1.1. Классификация

Строение органических соединений описывается с помощью структурных формул.

Структурной формулой называют изображение последовательности связывания атомов в молекуле при помощи химических символов.

С понятием последовательности соединения атомов в молекуле непосредственно связано явление изомерии, т. е. существования соединений одинакового состава, но различного химического стро- ения, называемых структурными изомерами (изомеры строения). Важнейшей характеристикой большинства неорганических соединений служит состав, выражаемый молекулярной формулой, например хлороводородная кислота HC1, серная кислота H 2 SO 4. Для органи- ческих соединений состав и соответственно молекулярная формула не являются однозначными характеристиками, так как одному и тому же составу может соответствовать много реально существующих соединений. Например, структурные изомеры бутан и изобутан, имея одинаковую молекулярную формулу С 4 Н 10, различаются последовательностью связывания атомов и имеют разные физико-химические характеристики.

Первым классификационным критерием служит деление органических соединений на группы с учетом строения углеродного скелета (схема 1.1).

Схема 1.1. Классификация органических соединений по строению углеродного скелета

Ациклические соединения - это соединения с незамкнутой цепью атомов углерода.

Алифатические (от греч. a leiphar - жир) углеводороды - простейшие представители ациклических соединений - содержат только атомы углерода и водорода и могут быть насыщенными (алканы) и ненасыщенными (алкены, алкадиены, алкины). Их структурные формулы часто записывают в сокращенном (сжатом) виде, как показано на примере н -пентана и 2,3-диметилбутана. При этом обозначение одинарных связей опускают, а одинаковые группы заключают в скобки и указывают число этих групп.

Углеродная цепь может быть неразветвленной (например, в н-пентане) и разветвленной (например, в 2,3-диметилбутане и изопрене).

Циклические соединения - это соединения с замкнутой цепью атомов.

В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.

Карбоциклические соединения содержат в цикле только атомы углерода и делятся на ароматические и алициклические (циклические неароматические). Число атомов углерода в циклах может быть различным. Известны большие циклы (макроциклы), состоящие из 30 атомов углерода и более.

Для изображения циклических структур удобны скелетные формулы, в которых опускают символы атомов углерода и водорода, но символы остальных элементов (N, O, S и др.) указывают. В таких

формулах каждый угол многоугольника означает атом углерода с необходимым числом атомов водорода (с учетом четырехвалентности атома углерода).

Родоначальником ароматических углеводородов (аренов) является бензол. Нафталин, антрацен и фенантрен относятся к полициклическим аренам. Они содержат конденсированные бензольные кольца.

Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов (от греч. heteros - другой, иной): азот, кислород, серу и др.

Большое многообразие органических соединений можно рассматривать в целом как углеводороды или их производные, полученные путем введения в структуру углеводородов функциональных групп.

Функциональная группа - это гетероатом или группа атомов неуглеводородного характера, определяющие принадлежность соеди- нения к определенному классу и ответственных за его химические свойства.

Вторым, более существенным классификационным критерием, служит деление органических соединений на классы в зависимости от природы функциональных групп. Общие формулы и названия важнейших классов приведены в табл. 1.1.

Соединения с одной функциональной группой называют монофункциональными (например, этанол), с несколькими одинаковыми функциональными группами - полифункциональными (например,

Таблица 1.1. Важнейшие классы органических соединений

* К функциональным группам иногда причисляют двойную и тройную связи.

** Применяемое иногда название тиоэфиры использовать не следует, так как оно

относится к серосодержащим сложным эфирам (см. 6.4.2).

глицерин), с несколькими разными функциональными группами - гетерофункциональными (например, коламин).

Соединения каждого класса составляют гомологический ряд, т. е. группу родственных соединений с однотипной структурой, каждый последующий член которого отличается от предыдущего на гомологическую разность СН 2 в составе углеводородного радикала. Например, ближайшими гомологами являются этан С 2 Н 6 и пропан С з Н 8 , метанол

СН 3 ОН и этанол СН 3 СН 2 ОН, пропановая СН 3 СН 2 СООН и бутановая СН 3 СН 2 СН 2 СООН кислоты. Гомологи обладают близкими химическими свойствами и закономерно изменяющимися физическими свойствами.

1.2. Номенклатура

Номенклатура представляет собой систему правил, позволяющих дать однозначное название каждому индивидуальному соединению. Для медицины знание общих правил номенклатуры имеет особенно большое значение, так как в соответствии с ними строятся названия многочисленных лекарственных средств.

В настоящее время общепринята систематическая номенклатура ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии)*.

Однако до сих пор сохраняются и широко применяются (особенно в медицине) тривиальные (обыденные) и полутривиальные названия, использовавшиеся еще до того, как становилось известным строение вещества. В этих названиях могут отражаться природные источники и способы получения, особо заметные свойства и области применения. Например, лактоза (молочный сахар) выделена из молока (от лат. lactum - молоко), пальмитиновая кислота - из пальмового масла, пировиноградная кислота получена при пиролизе виноградной кислоты, в названии глицерина отражен его сладкий вкус (от греч. glykys - сладкий).

Тривиальные названия особенно часто имеют природные соединения - аминокислоты, углеводы, алкалоиды, стероиды. Употребление некоторых укоренившихся тривиальных и полутривиальных названий разрешается правилами ИЮПАК. К таким названиям относятся, например, «глицерин» и названия многих широко известных ароматических углеводородов и их производных.

* Номенклатурные правила ИЮПАК по химии. Т. 2. - Органическая химия/пер. с англ. - М.: ВИНИТИ, 1979. - 896 с.; Хлебников А.Ф., Новиков М.С. Современная номенклатура органических соединений, или Как правильно называть органические вещества. - СПб.: НПО «Профессионал», 2004. - 431 с.

В тривиальных названиях дизамещенных производных бензола взаимное расположение заместителей в кольце обозначается префиксами орто- (о-) - для групп, находящихся рядом, мета- (м-) - через один атом углерода и пара- (п-) - напротив. Например:

Для использования систематической номенклатуры ИЮПАК необходимо знать содержание следующих номенклатурных терминов:

Органический радикал;

Родоначальная структура;

Характеристическая группа;

Заместитель;

Локант.

Органический радикал* - остаток молекулы, из которой удаляются один или несколько атомов водорода и при этом остаются свободными одна или несколько валентностей.

Углеводородные радикалы алифатического ряда имеют общее название - алкилы (в общих формулах обозначаются R), радикалы ароматического ряда - арилы (Ar). Два первых представителя алканов - метан и этан - образуют одновалентные радикалы метил СН 3 - и этил СН 3 СН 2 -. Названия одновалентных радикалов обычно образуются при замене суффикса -ан суффиксом -ил.

Атом углерода, связанный только с одним атомом углерода (т. е. концевой), называют первичным, с двумя - вторичным, с тремя - третичным, с четырьмя - четвертичным.

* Этот термин не следует путать с термином «свободный радикал», который характеризует атом или группу атомов с неспаренным электроном.

Каждый последующий гомолог из-за неравноценности атомов углерода образует несколько радикалов. При удалении атома водорода от концевого атома углерода пропана получают радикал н -пропил (нормальный пропил), а от вторичного атома углерода - радикал изопропил. Бутан и изобутан каждый образуют по два радикала. Буква н- (которую разрешается опускать) перед названием радикала указывает, что свободная валентность находится на конце неразветвленной цепи. Префикс втор- (вторичный) означает, что свободная валентность находится у вторичного атома углерода, а префикс трет- (третичный) - у третичного.

Родоначальная структура - химическая структура, составляющая основу называемого соединения. В ациклических соединениях в качестве родоначальной структуры рассматривается главная цепь атомов углерода, в карбоциклических и гетероциклических соединениях - цикл.

Характеристическая группа - функциональная группа, связанная с родоначальной структурой или частично входящая в ее состав.

Заместитель - любой атом или группа атомов, замещающие в ор- ганическом соединении атом водорода.

Локант (от лат. locus - место) цифра или буква, указывающая положение заместителя или кратной связи.

Наиболее широко применяются два вида номенклатуры: заместительная и радикально-функциональная.

1.2.1. Заместительная номенклатура

Общая конструкция названия по заместительной номенклатуре представлена на схеме 1.2.

Схема 1.2. Общая конструкция названия соединения по заместительной номенклатуре

Название органического соединения представляет собой сложное слово, включающее название родоначальной структуры (корень) и названия разного типа заместителей (в виде префиксов и суффиксов), отражающих их природу, местонахождение и число. Отсюда и название этой номенклатуры - заместительная.

Заместители подразделяются на два типа:

Углеводородные радикалы и характеристические группы, обозначаемые только префиксами (табл. 1.2);

Характеристические группы, обозначаемые как префиксами, так и суффиксами в зависимости от старшинства (табл. 1.3).

Для составления названия органического соединения по заместительной номенклатуре используют приводимую ниже последовательность правил.

Таблица 1.2. Некоторые характеристические группы, обозначаемые только префиксами

Таблица 1.3. Префиксы и суффиксы, применяемые для обозначения важнейших характеристических групп

* Атом углерода, отмеченный цветом, включается в состав родоначальной структуры.

** Большинство фенолов имеет тривиальные названия.

Правило 1. Выбор старшей характеристической группы. Выявляют все имеющиеся заместители. Среди характеристических групп определяют старшую группу (если она присутствует), используя шкалу старшинства (см. табл. 1.3).

Правило 2. Определение родоначальной структуры. В качестве родо- начальной структуры в ациклических соединениях используют главную цепь атомов углерода, а в карбоциклических и гетероциклических соединениях - основную циклическую структуру.

Главную цепь атомов углерода в ациклических соединениях выбирают по приведенным ниже критериям, причем каждый последую- щий критерий используют, если предыдущий не приводит к однозначному результату:

Максимальное число характеристических групп, обозначаемых как префиксами, так и суффиксами;

Максимальное число кратных связей;

Максимальная длина цепи атомов углерода;

Максимальное число характеристических групп, обозначаемых только префиксами.

Правило 3. Нумерация родоначальной структуры. Родоначальную структуру нумеруют так, чтобы старшая характеристическая группа получила наименьший локант. Если выбор нумерации неоднозначен, то применяют правило наименьших локантов, т. е. нумеруют так, чтобы заместители получили наименьшие номера.

Правило 4. Название блока родоначальной структуры со старшей характеристической группой. В названии родоначальной структуры степень насыщенности отражают суффиксами: -ан в случае насыщенного углеродного скелета, -ен - при наличии двойной и -ин - тройной связи. К названию родоначальной структуры присоединяют суффикс, обозначающий старшую характеристическую группу.

Правило 5. Названия заместителей (кроме старшей характеристической группы). Дают название заместителям, обозначаемым префиксами в алфавитном порядке. Положение каждого заместителя и каждой кратной связи указывают цифрами, соответствующими номеру атома углерода, с которым связан заместитель (для кратной связи указывают только наименьший номер).

В русской терминологии цифры ставят перед префиксами и после суффиксов, например, 2-аминоэтанол H 2 NCH 2 CH 2 OH, бутадиен-1,3

СН 2 =СН-СН=СН 2 , пропанол-1 СН 3 СН 2 СН 2 ОН.

Для иллюстрации этих правил ниже приведены примеры построения названий ряда соединений в соответствии с общей схемой 1.2. В каждом случае отмечены особенности строения и способ их отражения в названии.

Схема 1.3. Построение систематического названия фторотана

2- бромо-1,1,1-трифторо-2-хлороэтан (средство для ингаляционного наркоза)

При наличии в соединении нескольких одинаковых заместителей при одном и том же атоме углерода локант повторяют столько раз, сколько имеется заместителей, с добавлением соответствующего умножающего префикса (схема 1.3). Заместители перечисляют по алфавиту, причем умножающий префикс (в данном примере - три-) в алфавитном порядке не учитывают. Схема 1.4. Построение систематического названия цитраля

После суффикса -аль, как и для сочетания -овая кислота, можно не указывать положение характеристических групп, так как они всегда находятся в начале цепи (схема 1.4). Двойные связи отражают суффиксом -диен с соответствующими локантами в названии родоначальной структуры.

Суффиксом обозначают старшую из трех характеристических групп (схема 1.5); остальные заместители, включая нестаршие характеристические группы, перечисляют по алфавиту как префиксы.

Схема 1.5. Построение систематического названия пеницилламина

Схема 1.6. Построение систематического названия щавелевоуксусной кислоты

оксобутандиовая кислота (продукт углеводного обмена)

Умножающий префикс ди- перед сочетанием -овая кислота указывает на наличие двух старших характеристических групп (схема 1.6). Локант перед оксо- опущен, так как иное положение оксогруппы соответствует той же структуре.

Схема 1.7. Построение систематического названия ментола

Нумерацию в цикле ведут от атома углерода, с которым связана старшая характеристическая группа (ОН) (схема 1.7), несмотря на то, что наименьший набор локантов всех заместителей в кольце может быть 1,2,4-, а не 1,2,5- (как в рассматриваемом примере).

Схема 1.8. Построение систематического названия пиридоксаля

I Заместители: ГВДРОКСИМЕТИЛ,ГИДРОКСИ, МЕТИЛ I

Альдегидную группу, атом углерода которой не включен в родоначальную структуру (схема 1.8), обозначают суффиксом -карбаль- дегид (см. табл. 1.3). Группу -СН 2 ОН рассматривают как составной заместитель и называют «гидроксиметил», т. е. метил, в котором в свою очередь произведено замещение атома водорода гидроксильной группой. Другие примеры составных заместителей: диметиламино- (CH 3) 2 N-, этокси- (сокращение от этилокси) С 2 Н 5 О-.

1.2.2. Радикально-функциональная номенклатура

Радикально-функциональная номенклатура используется реже, чем заместительная. В основном она применяется для таких классов органических соединений, как спирты, амины, простые эфиры, сульфиды и некоторых других.

Для соединений с одной функциональной группой общее название включает название углеводородного радикала, а наличие функцио- нальной группы отражают опосредованно через название соответствующего класса соединений, принятого в этом виде номенклатуры (табл. 1.4).

Таблица 1.4. Названия классов соединений, используемые в радикальнофункциональной номенклатуре*

1.2.3. Построение структуры по систематическому названию

Изображение структуры по систематическому названию представляется обычно более легкой задачей. Сначала записывают родо- начальную структуру - открытую цепь или цикл, затем нумеруют атомы углерода и расставляют заместители. В заключение дописывают атомы водорода с условием, чтобы каждый атом углерода оказался четырехвалентным.

В качестве примера приводится построение структур лекарственного средства ПАСК (сокращение от пара-аминосалициловой кислоты, систематическое название - 4-амино-2-гидроксибензойная кислота) и лимонной (2-гидроксипропан-1,2,3-трикарбоновой) кислоты.

4-Амино-2-гидроксибензойная кислота

Родоначальная структура - тривиальное название цикла со старшей характеристической

группой (СООН):

Расстановка заместителей - группа у атома С-4 и группа ОН у атома С-2:

2-Гидроксипропан-1,2,3-трикарбоновая кислота

Главная углеродная цепь и нумерация:

Расстановка заместителей - три группы СООН (-трикарбоновая кислота) и группа ОН у атома С-2:

Дополнение атомами водорода:


Следует заметить, что в систематическом названии лимонной кислоты в качестве родоначальной структуры выбран пропан, а не более длинная цепь - пентан, так как в пятиуглеродную цепь невозможно включить атомы углерода всех карбоксильных групп.

Классификация органических веществ еще более сложна. Это обусловлено целым рядом причин: чрезвычайной многочисленностью органических соединений, сложностью и разнообразием их строения, самой историей изучения соединений углерода.
Действительно, до середины XIX в. органическая химия, по образному выражению Ф.Велера*, представлялась «дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть». Только с появлением в 1861 г. теории химического строения органических соединений «дремучий лес»
органической химии стал преобразовываться в залитый солнечным светом регулярный парк со строгой сеткой аллей и дорожек. Авторами этой теории явилось выдающееся интернациональное трио ученых-химиков: наш соотечественник А.М.Бутлеров**, немец Ф.А.Кекуле и англичанин А.Купер.

Рис. 5. Фридрих Велер
(1800–1882)


Рис. 6. Александр
Михайлович Бутлеров
(1828–1886)

Сущность созданной ими теории химического строения можно сформулировать в виде трех положений.
1. Атомы в молекулах соединены в определенном порядке согласно их валентности, причем углерод в органических соединениях четырехвалентен.
2. Свойства веществ определяются не только качественным и количественным элементным составом, но и порядком связи атомов в молекулах, т.е. химическим строением.
3. Атомы в молекулах оказывают друг на друга взаимное влияние, что отражается на свойствах веществ.
* Немецкий химик. Проводил исследования в области неорганической и органической химии. Установил существование явления изомерии, впервые осуществил синтез органического вещества (мочевины) из неорганического. Получил некоторые металлы (алюминий, бериллий и др.).
** Выдающийся русский химик, автор теории химического
строения органических веществ. На основании по
нятия о строении объяснил явление изомерии, предсказал существование изомеров ряда веществ и впервые их синтезировал. Первым осуществил синтез сахаристого вещества. Создатель школы русских хим иков, в которую входили В.В.Марковников, А.М.Зайцев, Е.Е.Вагнер, А.Е.Фаворский и др.

Сегодня кажется невероятным, что до середины XIX в., в период великих открытий в естествознании, ученые плохо представляли себе внутреннее устройство вещества. Именно Бутлеров ввел термин «химическое строение», подразумевая под ним систему химических связей между атомами в молекуле, их взаимное расположение в пространстве. Благодаря такому пониманию строения молекулы оказалось возможным объяснить явление изомерии, предсказать существование неизвестных изомеров, соотнести свойства веществ с их химическим строением. В качестве иллюстрации явления изомерии приведем формулы и свойства двух веществ – этилового спирта и диметилового эфира, имеющих одинаковый элементный состав С2Н6О, но различное химическое строение (табл. 2).
Таблица 2


Иллюстрация зависимости свойств вещества от его строения


Явление изомерии, очень широко распространенное в органической химии, является одной из причин многообразия органических веществ. Другая причина многообразия органических веществ заключается в уникальной способности атома углерода образовывать друг с другом химические связи, в результате чего получаются углеродные цепи
различной длины и строения: неразветвленные, разветвленные, замкнутые. Например, четыре атома углерода могут образовать такие цепи:


Если учесть, что между двумя атомами углерода могут существовать не только простые (одинарные) связи С–С, но также двойные С=С и тройные С≡С, то число вариантов углеродных цепей и, следовательно, различных органических веществ значительно увеличивается.
На теории химического строения Бутлерова основана и классификация органических веществ. В зависимости от того, атомы каких химических элементов входят в состав молекулы, все органичебольших групп: углеводороды, кислородсодержащие, азотсодержащие соединения.
Углеводородами называются органические соединения, состоящие только из атомов углерода и водорода.
По строению углеродной цепи, наличию или отсутствию в ней кратных связей все углеводороды делятся на несколько классов. Эти классы представлены на схеме 2.
Если углеводород не содержит кратных связей и цепь углеродных атомов не замкнута, он относится, как вы знаете, к классу предельных углеводородов, или алканов. Корень этого слова имеет арабское происхождение, а суффикс -ан присутствует в названиях всех углеводородов этого класса.
Схема 2


Классификация углеводородов


Наличие в молекуле углеводорода одной двойной связи позволяет отнести его к классу алкенов, причем его отношение к этой группе веществ подчеркивается
суффиксом -ен в названии. Простейшим алкеном является этилен, имеющий формулу CН2=СН2. Двойных связей С=С в молекуле может быть две, в этом случае вещество относится к классу алкадиенов.
Попытайтесь сами пояснить значение суффиксов -диен. Например, бутадиен-1,3 имеет структурную формулу: CН2=СН–CН=СН2.
Углеводороды с тройной углерод-углеродной связью в молекуле называют алкинами. На принадлежность к этому классу веществ указывает суффикс -ин. Родоначальником класса алкинов выступает ацетилен (этин), молекулярная формула которого С2Н2, а структурная – НС≡СН. Из соединений с замкнутой цепочкой углеродных
атомов важнейшими являются арены – особый класс углеводородов, название первого представителя которых вы наверняка слышали – это бензол С6Н6, структурная формула которого также известна каждому культурному человеку:


Как вы уже поняли, помимо углерода и водорода, в состав органических веществ могут входить атомы других элементов, в первую очередь кислорода и азота. Чаще всего атомы этих элементов в различных сочетаниях образуют группы, которые называют функциональными.
Функциональной группой называют группу атомов, определяющую наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.
Основные классы органических соединений, содержащих функциональные группы, представлены на схеме 3.
Схема 3
Основные классы органических веществ, содержащих функциональные группы


Функциональная группа –ОН называется гидроксильной и определяет принадлежность к одному из важнейших классов органических веществ – спиртам.
Названия спиртов образуются с помощью суффикса -ол. Например, наиболее известный представитель спиртов – это этиловый спирт, или этанол, С2Н5ОН.
Атом кислорода может быть связан с атомом углерода двойной химической связью. Группа >C=O называется карбонильной. Карбонильная группа входит в состав нескольких
функциональных групп, в том числе альдегидной и карбоксильной. Органические вещества, содержащие эти функциональные группы, называются, соответственно, альдегидами и карбоновыми кислотами. Наиболее известные представители альдегидов – это формальдегид НСОН и уксусный альдегид СН3СОН. С уксусной кислотой СН3СООН, раствор которой называется столовым уксусом, наверняка знаком каждый. Отличительным структурным признаком азотсодержащих органических соединений, и, в первую очередь, аминов и аминокислот является присутствие в их молекулах аминогруппы –NH2.
Приведенная классификация органических веществ также весьма относительна. Подобно тому, как в одной молекуле (например, алкадиенов) может содержаться две кратные связи, вещество может быть обладателем двух и даже более функциональных групп. Так, структурными единицами главных носителей жизни на земле – белковых молекул – являются аминокислоты. В молекулах этих веществ обязательно присутствуют как минимум две функциональные группы – карбоксильная иаминогруппа. Простейшая аминокислота называется глицин и имеет формулу:


Подобно амфотерным гидроксидам, аминокислоты сочетают в себе свойства кислот (за счет карбоксильной группы) и оснований (благодаря наличию в молекуле аминогруппы).
Для организации жизни на Земле амфотерные свойства аминокислот имеют особое значение – за счет взаимодействия аминогрупп и карбоксильных групп аминокис-
лоты соединяются в полимерные цепочки белков.
? 1. Назовите основные положения теории химического строения А.М.Бутлерова. Какую роль эта теория сыграла в развитии органической химии?
2. Какие классы углеводородов вам известны? По какому признаку проведена эта классификация?
3. Что называется функциональной группой органического соединения? Какие функциональные группы вы можете назвать? Какие классы органических соединений содержат названные функциональные группы? Запишите общие формулы классов соединений и формулы их представителей.
4. Дайте определение изомерии, запишите формулы возможных изомеров для соединений состава С4H10O. С помощью различных источников информации дайте названия каждому из них и приготовьте сообщение об одном из соединений.
5. Отнесите вещества, формулы которых: С6Н6, С2Н6, С2Н4, НСООН, СН3ОН, С6Н12О6, к соответствующим классам органических соединений. С помощью различных источников информации дайте названия каждому из них и приготовьте сообщение об одном из соединений.
6. Структурная формула глюкозы:К какому классу органических соединений вы отнесете это вещество? Почему его называют соединением с двойственной функцией?
7. Сравните органические и неорганические амфотерные соединения.
8. Почему аминокислоты относят к соединениям с двойственной функцией? Какую роль в организации жизни на Земле играет эта особенность строения аминокислот?
9. Приготовьте сообщение на тему «Аминокислоты – "кирпичики” жизни», используя возможности Интернета.
10. Приведите примеры относительности деления органических соединений на определенные классы. Проведите параллели подобной относительности для неорганических соединений.

Эти термины родились свыше четырёхсот лет назад. Тогдашние химики были уверены, что живые и неживые организмы состоят из разного набора веществ: первые – из органических, вторые из неорганических («минеральных»). Позднее стало ясно, что между живым и неживым нет непроходимой пропасти. Тем не менее, традиционное деление веществ на две большие группы осталось, хотя и потеряло прежний смысл.

Теперь органические вещества чаще всего определяют так: соединения, в состав которых входит углерод. Все прочие «по умолчанию» относят к неорганическим (минеральным). Чёткой грани между двумя группами не провести, потому что хватает исключений. Мы о них скажем ниже.

Кроме того, далеко не все вещества, именуемые органическими, входят в тела живых организмов. С другой стороны, в их составе всегда есть неорганика – вода, минеральные соли. Всё это может сбивать с толку несведущих в химии.

В общем, неудивительно, что Международный союз чистой и прикладной химии (ИЮПАК) не предлагает официального определения неорганических или органических соединений.

А споры продолжаются

Многие вещества, в которых входит углерод, химики традиционно отказываются считать органическими или спорят, куда их относить. Это угольная (карбонатная) и цианидная (синильная) кислоты и их соли, простые оксиды углерода (в том числе, всем известный углекислый газ), соединения углерода с серой, кремнием, карбиды и другие. А ведь есть ещё простые вещества, состоящие только из углерода – древесный и ископаемый уголь, кокс, сажа, графит и ещё пара десятков веществ.


Но, в общем, сложившееся деление на «органику» и «неорганику» сохраняется. Хотя бы потому, что, несомненно, помогает ориентироваться в мире веществ и осваиваться в нём новичкам.

Почему углерод?

Действительно, отчего из более, чем сотни химических элементов, только углерод оказался способным образовать миллионы веществ? Основных причин две: атомы углерода способны соединяться со атомами множества других элементов (водорода, кислорода, серы, фосфора и многих других) и друг с другом. В последнем случае образуются цепочки какой угодно длины и самой разнообразной конструкции – линейные, разветвлённые, замкнутые.

В результате число природных и синтезированных органических веществ исчисляется примерно 27 миллионами, а неорганических приближается всего лишь к полумиллиону. Как говорится, почувствуйте разницу.

Во всём нужен порядок

Неорганические вещества обычно подразделяют на простые и сложные. Первые состоят из одинаковых атомов. Атомы разных элементов образуют сложные вещества: оксиды, гидроксиды, кислоты, соли. Возможны и другие подходы. Например, классифицировать на основе одного из элементов: соединения железа, соединения хлора.

У органических веществ классов побольше. По составу и строению их обычно подразделяют на белки, аминокислоты, липиды, жирные кислоты, углеводы, нуклеиновые кислоты. На базе их биологического действия органические соединения можно группировать в алкалоиды, ферменты, витамины, гормоны, нейромедиаторы и др.

Классификация предполагает и «называние». Само собой, разные соединения должны всегда носить разные имена и при этом желательно, чтобы по имени можно было судить о самом веществе. Но когда речь идёт о миллионах разных названий… Как вам такое: (6E,13E)-18-бромо-12-бутил-11-хлоро-4,8-диэтил-5-гидрокси-15-метокситрикоза-6,13-диен-19-ин-3,9-дион? Оно составлено по всем официальным правилам органической химии.


Ясно, что самые длинные слова надо искать именно в мире органики. В русском языке рекордсменом считают словечко «тетрагидропиранилциклопентилтетрагидропиридопиридиновое» (55 букв!). Но это далеко не предел. В наших мышцах есть белок титин, полное химическое название которого в английском варианте состоит из 189 819 букв и произносится примерно три с половиной часа. Надеемся, вы не обидитесь, если мы публиковать его здесь не будем.

Классификация органических веществ

В зависимости от типа строения углеродной цепи органические вещества подразделяют на:

  • ациклические и циклические.
  • предельные (насыщенные) и непредельные (ненасыщенные).
  • карбоциклические и гетероциклические.
  • алициклические и ароматические.

Ациклические соединения — органические соединения, в молекулах которых отсутствуют циклы и все атомы углерода соединены друг с другом в прямые или разветвленные открытые цепи.

В свою очередь среди ациклических соединений выделяют предельные (или насыщенные), которые содержат в углеродном скелете только одинарные углерод-углеродные (С-С) связи и непредельные (или ненасыщенные), содержащие кратные — двойные (С=С) или тройные (С≡С) связи.

Циклические соединения - химические соединения, в которых присутствует три или более связанных атомов, образующие кольцо.

В зависимости от того, какими атомами образованы циклы различают карбоциклические соединения и гетероциклические соединения.

Карбоциклические соединения (или изоциклические) содержат в своих циклах только атомы углерода. Эти соединения в свою очередь делятся на алициклические соединения (алифатические циклические) и ароматические соединения.

Гетероциклические соединения содержат в составе углеводородного цикла один или несколько гетероатомов, чаще всего которыми являются атомы кислорода, азота или серы.

Простейшим классом органических веществ являются углеводороды – соединения, которые образованы исключительно атомами углерода и водорода, т.е. формально не имеют функциональных групп.

Поскольку углеводороды, не имеют функциональных групп для них возможна только классификация по типу углеродного скелета. Углеводороды в зависимости от типа их углеродного скелета делят на подклассы:

1) Предельные ациклические углеводороды носят название алканы. Общая молекулярная формула алканов записывается как C n H 2n+2 , где n — количество атомов углерода в молекуле углеводорода. Данные соединения не имеют межклассовых изомеров.

2) Ациклические непредельные углеводороды делятся на:

а) алкены — в них присутствует только одна кратная, а именно одна двойная C=C связь, общая формула алкенов C n H 2n ,

б) алкины – в молекулах алкинов также присутствует только одна кратная, а именно тройная С≡С связь. Общая молекулярная формула алкинов C n H 2n-2

в) алкадиены – в молекулах алкадиенов присутствуют две двойные С=С связи. Общая молекулярная формула алкадиенов C n H 2n-2

3) Циклические предельные углеводороды называются циклоалканы и имеют общую молекулярную формулу C n H 2n .

Остальные органические вещества в органической химии рассматривают как производные углеводородов, образуемые при введении в молекулы углеводородов так называемых функциональных групп, которые содержат другие химические элементы.

Таким образом, формулу соединений с одной функциональной группой можно записать как R-X, где R – углеводородный радикал, а Х – функциональная группа. Углеводородным радикалом называют фрагмент молекулы какого-либо углеводорода без одного или нескольких атомов водорода.

По наличию тех или иных функциональных групп соединения подразделяют на классы. Основные функциональные группы и классы соединений, в состав которых они входят, представлены в таблице:

Таким образом, различные комбинации типов углеродных скелетов с разными функциональными группами дают большое разнообразие вариантов органических соединений.

Галогенпроизводные углеводородов

Галогенпроизводными углеводородов называют соединения, получаемые при замене одного или нескольких атомов водорода в молекуле какого-либо исходного углеводорода на один или несколько атомов какого-либо галогена соответственно.

Пусть некоторый углеводород имеет формулу C n H m , тогда при замене в его молекуле X атомов водорода на X атомов галогена формула галогенпроизводного будет иметь вид C n H m- X Hal X . Таким образом, монохлорпроизводные алканов имеют формулу C n H 2n+1 Cl , дихлорпроизводные C n H 2n Cl 2 и т.д.

Спирты и фенолы

Спирты – производные углеводородов, один или несколько атомов водорода в которых заменены на гидроксильную группу -OH. Спирты с одной гидроксильной группой называют одноатомными, с двумя – двухатомными , с тремя трехатомными и т.д. Например:

Спирты с двумя и более гидроксильными группами называют также многоатомными спиртами. Общая формула предельных одноатомных спиртов C n H 2n+1 OH или C n H 2n+2 O. Общая формула предельных многоатомных спиртов C n H 2n+2 O x , где x – атомность спирта.

Спирты могут быть и ароматическими. Например:

бензиловый спирт

Общая формула таких одноатомных ароматических спиртов C n H 2n-6 O.

Однако, следует четко понимать, что производные ароматических углеводородов, в которых на гидроксильные группы заменены один или несколько атомов водорода при ароматическом ядре не относятся к спиртам. Их относят к классу фенолы . Например, это данное соединение является спиртом:

А это представляет собой фенол:

Причина, по которой фенолы не относят к спиртам, кроется в их специфических химических свойствах, сильно отличающих их от спиртов. Как легко заметить, однотомные фенолы изомерны одноатомным ароматическим спиртам, т.е. тоже имеют общую молекулярную формулу C n H 2n-6 O.

Амины

Аминами называют производные аммиака, в которых один, два или все три атома водорода замещены на углеводородный радикал.

Амины, в которых только один атом водорода замещен на углеводородный радикал, т.е. имеющие общую формулу R-NH 2 , называют первичными аминами .

Амины, в которых два атома водорода замещены на углеводородные радикалы, называют вторичными аминами . Формулу вторичного амина можно записать как R-NH-R’. При этом радикалы R и R’ могут быть как одинаковые, так и разные. Например:

Если в аминах отсутствуют атомы водорода при атоме азота, т.е. все три атома водорода молекулы аммиака замещены на углеводородный радикал, то такие амины называют третичными аминами . В общем виде формулу третичного амина можно записать как:

При этом радикалы R, R’, R’’ могут быть как полностью одинаковыми, так и все три разные.

Общая молекулярная формула первичных, вторичных и третичных предельных аминов имеет вид C n H 2 n +3 N.

Ароматические амины с только одним непредельным заместителем имеют общую формулу C n H 2 n -5 N

Альдегиды и кетоны

Альдегидами называют производные углеводородов, у которых при первичном атоме углерода два атома водорода заменены на один атом кислорода, т.е. производные углеводородов в структуре которых имеется альдегидная группа –СН=О. Общую формулу альдегидов можно записать как R-CH=O. Например:

Кетонами называют производные углеводородов, у которых при вторичном атоме углерода два атома водорода заменены на атом кислорода, т.е. соединения, в структуре которых есть карбонильная группа –C(O)-.

Общая формула кетонов может быть записана как R-C(O)-R’. При этом радикалы R, R’ могут быть как одинаковыми, так и разными.

Например:

пропанон бутанон

Как можно заметить, альдегиды и кетоны весьма схожи по строению, однако их все-таки их различают как классы, поскольку они имеют существенные различия в химических свойствах.

Общая молекулярная формула предельных кетонов и альдегидов одинакова и имеет вид C n H 2 n O

Карбоновые кислоты

Карбоновыми кислотами называют производные углеводородов, в которых есть карбоксильная группа –COOH.

Если кислота имеет две карбоксильные группы, такую кислоту называют дикарбоновой кислотой .

Предельные монокарбоновые кислоты (с одной группой -COOH) имеют общую молекулярную формулу вида C n H 2 n O 2

Ароматические монокарбоновые кислоты имеют общую формулу C n H 2 n -8 O 2

Простые эфиры

Простые эфиры – органические соединения, в которых два углеводородных радикала опосредованно соединены через атом кислорода, т.е. имеют формулу вида R-O-R’. При этом радикалы R и R’ могут быть как одинаковыми, так и разными.

Например:

Общая формула предельных простых эфиров такая же, как у предельных одноатомных спиртов, т.е. C n H 2 n +1 OH или C n H 2 n +2 О.

Сложные эфиры

Сложные эфиры – класс соединений на основе органических карбоновых кислот, у которых атом водорода в гидроксильной группе замещен на углеводородный радикал R. Фомулу сложных эфиров в общем виде можно записать как:

Например:

Нитросоединения

Нитросоединения – производные углеводородов, у которых один или несколько атомов водорода заменены на нитрогруппу –NO 2 .

Предельные нитросоединения с одной нитрогруппой имеют общую молекулярную формулу C n H 2 n +1 NO 2

Аминокислоты

Соединения, имеющие в своей структуре одновременно две функциональные группы – амино NH 2 и карбоксильную – COOH. Например,

NH 2 -CH 2 -COOH

Предельные аминокислоты с одной карбоксильной и одной аминогруппой изомерны соответствующим предельными нитросоединениям т.е. как и они имеют общую молекулярную формулу C n H 2 n +1 NO 2

В заданиях ЕГЭ на классификацию органических веществ важно уметь записывать общие молекулярные формулы гомологических рядов разных типов соединений, зная особенности строения углеродного скелета и наличия тех или иных функциональных групп. Для того, чтобы научиться определять общие молекулярные формулы органических соединений разных классов, будет полезен материал по этой теме .

Номенклатура органических соединений

Особенности строения и химических свойств соединений находят отражение в номенклатуре. Основными типами номенклатуры считаются систематическая и тривиальная .

Систематическая номенклатура фактически прописывает алгоритмы, в соответствии с которыми то или иное название составляется в строгом соответствии с особенностями строения молекулы органического вещества или, грубо говоря, его структурной формулы.

Рассмотрим правила составления названий органических соединений по систематической номенклатуре.

При составлении названий органических веществ по систематической номенклатуре наиболее важным является правильно определить число атомов углерода в наиболее длинной углеродной цепи или посчитать число атомов углерода в цикле.

В зависимости от количества атомов углерода в основной углеродной цепи, соединения, будут иметь в своем названии различный корень:

Количество атомов С в главной углеродной цепи

Корень названия

проп-

пент-

гекс-

гепт-

дек(ц)-

Вторая важная составляющая, учитываемая при составлении названий, — наличие/отсутствие кратных связей или функциональной группы, которые перечислены в таблице выше.

Попробуем дать название веществу, имеющему структурную формулу:

1. В главной (и единственной) углеродной цепи данной молекулы содержится 4 атома углерода, поэтому название будет содержать корень бут-;

2. В углеродном скелете отсутствуют кратные связи, следовательно, суффикс, который нужно использовать после корня слова будет -ан, как и у соответствующих предельных ациклических углеводородов (алканов);

3. Наличие функциональной группы –OH при условии, что нет более старших функциональных групп добавляет после корня и суффикса из п.2. еще один суффикс – «ол»;

4. В молекулах содержащих кратные связи или функциональные группы, нумерация атомов углерода главной цепи начинается с той стороны молекулы, к которой они ближе.

Рассмотрим еще один пример:

Наличие в главной углеродной цепи четырех атомов углерода говорит нам о том, что основой названия является корень «бут-», а отсутствие кратных связей говорит о суффиксе «-ан», который будет следовать сразу после корня. Старшая группа в данном соединении – карбоксильная, она и определяет принадлежность этого вещества к классу карбоновых кислот. Следовательно, окончание у названия будет «-овая кислота». При втором атоме углерода находится аминогруппа NH 2 — , поэтому данное вещество относится к аминокислотам. Также при третьем атоме углерода мы видим углеводородный радикал метил (CH 3 — ). Поэтому по систематической номенклатуре данное соединение называется 2-амино-3-метилбутановая кислота.

Тривиальная номенклатура, в отличие от систематической, как правило, не имеет связи со строением вещества, а обусловлена по большей части его происхождением, а также химическими или физическими свойствами.

Формула Название по систематической номенклатуре Тривиальное название
Углеводороды
CH 4 метан болотный газ
CH 2 =CH 2 этен этилен
CH 2 =CH-CH 3 пропен пропилен
CH≡CH этин ацетилен
CH 2 =CH-CH= CH 2 бутадиен-1,3 дивинил
2-метилбутадиен-1,3 изопрен
метилбензол толуол
1,2-диметилбензол орто -ксилол

(о -ксилол)

1,3-диметилбензол мета -ксилол

(м -ксилол)

1,4-диметилбензол пара -ксилол

(п -ксилол)

винилбензол стирол
Спирты
CH 3 OH метанол метиловый спирт,

древесный спирт

CH 3 CH 2 OH этанол этиловый спирт
CH 2 =CH-CH 2 -OH пропен-2-ол-1 аллиловый спирт
этандиол-1,2 этиленгликоль
пропантриол-1,2,3 глицерин
фенол

(гидроксибензол)

карболовая кислота
1-гидрокси-2-метилбензол орто -крезол

-крезол)

1-гидрокси-3-метилбензол мета -крезол

-крезол)

1-гидрокси-4-метилбензол пара -крезол

(п -крезол)

фенилметанол бензиловый спирт
Альдегиды и кетоны
метаналь формальдегид
этаналь уксусный альдегид, ацетальдегид
пропеналь акриловый альдегид, акролеин
бензальдегид бензойный альдегид
пропанон ацетон
Карбоновые кислоты
(HCOOH) метановая кислота муравьиная кислота

(соли и сложные эфиры — формиаты)

(CH 3 COOH) этановая кислота уксусная кислота

(соли и сложные эфиры — ацетаты)

(CH 3 CH 2 COOH) пропановая кислота пропионовая кислота

(соли и сложные эфиры — пропионаты)

C 15 H 31 COOH гексадекановая кислота пальмитиновая кислота

(соли и сложные эфиры — пальмитаты)

C 17 H 35 COOH октадекановая кислота стеариновая кислота

(соли и сложные эфиры — стеараты)

пропеновая кислота акриловая кислота

(соли и сложные эфиры — акрилаты)

HOOC-COOH этандиовая кислота щавелевая кислота

(соли и сложные эфиры — оксалаты)

1,4-бензолдикарбоновая кислота терефталевая кислота
Сложные эфиры
HCOOCH 3 метилметаноат метилформиат,

метиловый эфир мурвьиной кислоты

CH 3 COOCH 3 метилэтаноат метилацетат,

метиловый эфир уксусной кислоты

CH 3 COOC 2 H 5 этилэтаноат этилацетат,

этиловый эфир уксусной кислоты

CH 2 =CH-COOCH 3 метилпропеноат метилакрилат,

метиловый эфир акриловый кислоты

Азотсодержащие соединения
аминобензол,

фениламин

анилин
NH 2 -CH 2 -COOH аминоэтановая кислота глицин,

аминоуксусная кислота

2-аминопропионовая кислота аланин