Потоки световой энергии, падающей на сетчатку нашего глаза от Солнца и от звезд, различаются во многие миллиарды раз! Но глаз видит и то, и другое . Ни один технический измерительный прибор не имеет такого широкого диапазона чувствительности. Чтобы производить измерения, применяются специальные усилители или «ослабители» (фильтры) сигнала, а наш глаз справляется с этой проблемой сам. И не только глаз. Мы слышим писк комара и рев авиалайнера, а ведь их звуковое давление тоже различается в миллиарды раз. Как же работают в столь широком диапазоне наши чувства? Оказывается, они используют одну «математическую хитрость» — преобразование измерительной шкалы.

В быту, как правило, мы используем для измерения различных величин линейные шкалы : для измерения длины - метры, мили и футы, для указания веса - граммы, тонны и фунты, а также градусы Цельсия или Фаренгейта - для температуры. В науке диапазон измерений значительно шире, чем в быту, поэтому ученые часто оперируют порядками величин, записывая числа в так называемой научной символике, обозначаемой на калькуляторах как «scientific notation». Например, вместо 56000 пишут 5,6 ´ 10 4 . По существу, это логарифмическая запись, хотя в показателе степени обычно оставляют только целую часть логарифма, а мантиссу - дробную часть логарифма - записывают в виде десятичной дроби. Это удобно: целый показатель степени сразу указывает область измерения - «порядок величины». В нашем примере запись «10 4 » говорит о том, что речь идет о десятках тысяч. Десятичная дробь уточняет значение числа, причем количество цифр в ней обычно соответствует точности измерения, и запись «5,6» указывает, что точность измерения, вероятно, была около 1%.

Неосознанно мы очень часто используем такое представление чисел и в быту. Говоря: «Три с половиной миллиона», или пользуясь сокращенной записью «3,5 млн», мы фактически пользуемся научной нотацией (3,5 ´ 10 6). И, как оказывается, наша неявная склонность к логарифмическому представлению чисел имеет глубокое физиологическое обоснование: дело в том, что различные органы чувств в нашем теле тоже пользуются логарифмическими шкалами.

По-видимому, впервые это заметил французский физик Пьер Бугер (Pierre Bouguer , 1698-1758), обнаруживший в опытах с освещенными экранами, что глаз фиксирует относительное различие яркости поверхностей. А в виде четкого правила это открытие сформулировал немецкий физиолог Эрнст Вебер (Ernst Heinrich Weber , 1795–1878), изучавший мышечную и кожную чувствительность. Он установил, что мы воспринимаем не абсолютное, а относительное изменение силы раздражителя. Например, если в руке у вас гирька весом в 10 г, то вы уверенно ощущаете добавку к ней ещё такого же веса; но если вы держите вес в 10 кг, то добавление к нему 10-граммовой гирьки вы не ощутите. Позже это подтвердилось и для других органов чувств - зрения, слуха, вкуса. Выяснилось, что наша чувствительность относительна, и разрешающая способность органов чувств обычно составляет несколько процентов.

В 1858 году немецкий физик и психолог Густав Фехнер (Gustav Theodor Fechner , 1801–1887) сформулировал это математически: интенсивность воспринимаемого нами ощущения пропорциональна логарифму силы раздражения. Этот закон называется законом Вебера-Фехнера, или основным психофизическим законом. Нередко его формулируют так: «При изменении силы раздражителя в геометрической прогрессии, интенсивность ощущения меняется в арифметической прогрессии». Разумеется, область справедливости этого правила не безгранична; оно остается верным для раздражителей не слишком слабых (выше порога чувствительности) и не слишком сильных (ниже болевого порога).

Биологические механизмы реализации закона Вебера-Фехнера пока ещё не до конца ясны. Поэтому мы лишь отметим, как эта особенность нашего восприятия проявляется в науке и технике. Некоторые общепринятые логарифмические шкалы, определяемые выбором коэффициентов пропорциональности, приведены в таблице.

Таблица . Логарифмические шкалы

Взаимное соответствие между ними такое: 1 dex = 1 B = 10 dB = –2,5 mag » 2,303 exp. Заметим, что во всех этих шкалах значок после числа указывает не физическую размерность величины, а тип шкалы. Во всех логарифмических шкалах выражается отношение двух одноименных физических величин. Поэтому запись «0,5 dex» может означать как рост в 3,16… раза годового дохода компании (скажем, с 86 до 272 млн руб.), так и увеличение в 3,16… раза среднего удоя коров на ферме (скажем, с 1500 до 4750 литров в год).

Громкость и высота звука - белы, децибелы, октавы

В шкале обычных десятичных логарифмов единица измерения называется бел в честь американского изобретателя телефона Александера Белла (Alexander Graham Bell , 1847–1922). Чаще применяется её десятая часть - децибел. Обе единицы в основном используются в акустике для измерения уровня интенсивности звука и звукового давления, а также в электротехнике. Разность уровней в 1 дБ означает отношение в 10 0,1 =1,2589… раз. Три децибела почти точно означают удвоение. В акустике за ноль-пункт принимают еле слышимый звук (давление около 2 ´ 10 –5 Н/м 2 ), так что при уровне громкости в 90 дБ звуковое давление на барабанную перепонку в миллиард раз больше, чем при едва уловимом шепоте.

Однако у единиц бел и децибел есть особенность, затрудняющая их применение за пределом акустики и электротехники. Дело в том, что эти логарифмические шкалы определяются по-разному для разных физических величин. Введенное выше определение используется только для «энергетических» величин, к которым относятся мощность, энергия, поток энергии… А для «силовых» величин (напряжение, сила тока, давление, напряженность поля…) используется иное определение бела и децибела , поскольку, к примеру, интенсивность звука (поток энергии) и звуковое давление связаны соотношением I ~ p 2 . Неоднозначность белов и децибелов делает более удобной единицу dex, которая применяется всё чаще.

Если амплитуду звуковой волны мы воспринимаем как громкость, то её частоту воспринимаем как высоту звука. И в этом случае справедлив закон Вебера-Фехнера: разные звуки воспринимаются нами как равноотстоящие по высоте, если равны отношения их частот. Для измерения музыкальных интервалов применяются логарифмические единицы. Основная среди них - октава, интервал между двумя звуками, частота одного из которых вдвое больше частоты другого. Понятие октавы становится всё более популярным и за пределом музыкальной сферы, поскольку числа вида 2 n широко используются в импульсной электронике, в частности, в вычислительной технике . Правда, в этих областях слово октава обычно заменяют словом бит (двоичный разряд).

Яркость источников света - шкала звездных величин

Астрономы измеряют «блеск» небесных светил в звездных величинах . Это безразмерная величина, характеризующая освещенность, создаваемую небесным объектом вблизи наблюдателя. Как видим, словом блеск астрономы характеризуют зрительное восприятие, не совсем совпадающее с тем, что принято в быту. Блеск одного источника указывают путем его сравнения с блеском другого, принятого за эталон . Такими эталонами обычно служат специально подобранные звезды.

Основанием шкалы звездных величин служит корень пятой степени из 100. Это дань исторической традиции, не имеющая какого-либо рационального оправдания. Для целей астрономической фотометрии вполне хватило бы белов, но звездные величины родились гораздо раньше, и теперь от них трудно отказаться. Обозначают звездную величину латинской буквой «m» (от лат. magnitudo - величина). Среди странностей этой шкалы есть ещё одна - её направление обратное: чем больше значение звездной величины, тем слабее блеск объекта. Например, звезда 2-й звездной величины (2 m ) в 2,512 раза ярче звезды 3-й величины (3 m ) и в 2,512 ´ 2,512 = 6,310 раза ярче звезды 4-й величины (4 m ), и т.д.

Химическая чувствительность - шкала кислотности

Очень близка к шкале звездных величин и химическая шкала реакции среды, так называемая шкала кислотности . Напомню, что известный школьникам и всем, кто пользуется косметикой , водородный показатель pH определяется соотношением: pH = – lg , где - концентрация положительных водородных ионов в растворе. При этом за ноль-пункт принимают чистую воду при комнатной температуре (нейтральная среда), имеющую =10 –7 . Далее при повышении кислотности значение pH уменьшается - чем не шкала звездных величин? Чем выше кислотность, тем ниже значение индекса, только основанием логарифма служит не 2,512… (как у звездных величин), а 10.

Как известно, первыми химическими индикаторами были наши вкусовые рецепторы , которыми сегодня пользуются только повара, а раньше пользовались и химики. Поэтому не удивительно, что в химии появилась логарифмическая шкала концентрации: сработал закон Вебера-Фехнера, которому подчиняются все наши чувства, в том числе и органы вкуса.

Восприятие психических явлений - шкала эмоций

На нескольких примерах мы убедимся, что не только физиологические, но и психические шкалы, определяющие силу наших эмоций, также имеют логарифмический характер: для своих субъективных оценок произведенного на нас впечатления мы подсознательно выбираем «ступеньки» в виде геометрической прогрессии.

В качестве общеизвестного примера начнем со «шкалы Ландау», по которой наш знаменитый физик оценивал заслуги своих коллег. Вот как об этом вспоминает академик В. Л. Гинзбург: «… Ландау имел «шкалу заслуг» в области физики. Шкала была логарифмическая (классу 2 отвечали достижения в 10 раз меньше, чем для класса 1). Из физиков нашего века класс 0,5 имел только Эйнштейн , к классу 1 относились Бор , Дирак, Гейзенберг и ряд других…»

Другие ученики великого физика рассказывают о шкале Ландау немного иначе: «Ландау присваивал великим ученым-физикам всего мира «звездные» номера. Вы знаете, что звезда первой величины - это очень яркая звезда, звезда второй величины - менее яркая и т.д. Эйнштейну, Бору и Ньютону Ландау присвоил половинную величину - 0,5. Дирак, Гейзенберг - это звезды первой величины. Себе он присваивал вторую величину».

Остается неясным, логарифм по какому основанию - 10 или 2,512… - использовал Лев Ландау для определения уровня гениальности физиков-теоретиков. Несомненно лишь одно: для этих сугубо эмоциональных, субъективных оценок он использовал логарифмическую шкалу.

Я уже отмечал, что в быту мы тоже нередко используем шкалу логарифмов. Примеры можно приводить долго. Так, богатых людей мы делим на миллионеров и миллиардеров. Города делим по населению на миллионные и стотысячные. Покупая продукты в магазине, стараемся экономить рубли, а задумываясь о покупке нового холодильника или телевизора, обращаем внимание лишь на сотни рублей. Как и в случае физиологических шкал, в бытовых эмоциональных вопросах мы воспринимаем не абсолютное, а относительное различие. При этом оно становится для нас заметным и значимым, когда превышает несколько процентов от измеряемой величины. Похоже, что чувствительность нашего «измерителя эмоций» близка к чувствительности глаза, уха и прочих физиологических рецепторов.

Рассмотрим одну из «эмоциональных» шкал, предложенных в последние годы.

Туринская и палермская шкалы астероидной опасности

В целом шкала Бинзела подобна шкале Рихтера , используемой сейсмологами для указания энерговыделения при землетрясениях. Обе они вполне доступны пониманию неспециалистов, в чём и заключается их несомненная польза. Туринская шкала позволяет классифицировать астероиды и другие небесные тела (с учетом их размера и скорости относительно нашей планеты) по 11 уровням степени их опасности для землян. Она учитывает не только вероятность столкновения астероида с Землей, но и потенциальные разрушения, к которым может привести катастрофа .

Как видно из таблицы, к нулевой категории отнесены те объекты, о которых с уверенностью можно сказать, что они не достигнут поверхности Земли; к первой - те, что всё же заслуживают внимательного слежения; ко второй, третьей и четвертой отнесены малые планеты, вызывающие оправданное беспокойство. В пятую-седьмую категории включены тела, явно угрожающие Земле, а объекты из последних трех несомненно столкнутся с нашей планетой, причем последствия для её биосферы могут быть локальными, региональными или глобальными. Туринская шкала оказалась полезной для классификации и объяснения публике возможных последствий космических столкновений. Хотя она не содержит четких количественных критериев, всё же можно заметить, что с переходом к следующему баллу, эмоциональное напряжение возрастает «на порядок».

Таблица. Туринская шкала опасности столкновения Земли с астероидами и кометами

Оценка опасности объекта Балл Краткая характеристика
Безопасен 0 Вероятность столкновения в ближайшие десятилетия равна нулю. К этой же категории относят столкновения Земли с объектами, которые сгорят в атмосфере, не достигнув поверхности
Заслуживает внимательного слежения 1 Вероятность столкновения крайне низка. Скорее всего, подобные тела в ближайшие десятилетия с Землей не встретятся
Вызывает беспокойство 2 Вероятность столкновения низка, хотя тело пролетит довольно близко. Подобные события происходят нередко
3 Вероятность столкновения с телом, способным вызвать локальные разрушения, составляет не менее 1%
4 Вероятность столкновения с телом, способным привести к региональным разрушениям, составляет свыше 1%
Явно угрожает 5 Вероятность столкновения с телом, способным вызвать катастрофу регионального масштаба, очень велика
6 То же – с вероятными глобальными последствиями
7 То же – с неизбежными глобальными последствиями
Столкновение неизбежно 8 Вероятность катастрофических локальных событий – одно в 50-1000 лет
9 Вероятность катастрофических локальных событий – одно в 1000-100 000 лет
10 Вероятность глобальной катастрофы (с изменением климата на планете) – не менее одного события в 100 000 лет

Количественно это подтвердилось в недавно опубликованной профессиональной версии Туринской шкалы, названной Палермской шкалой опасности столкновения (Palermo Technical Impact Hazard Scale). Вместо баллов в ней используется непрерывный индекс PS (от Palermo Scale), определенный в виде логарифма отношения ожидаемой вероятности столкновения с конкретным объектом на интервале расчетного времени к фоновой вероятности столкновения с подобными объектами за это же время. Таким образом, степень страха метеоритной опасности также имеет логарифмический характер.

Как видим, свойственный человеческой физиологии и психике логарифмический закон расширяет динамический диапазон наших органов чувств, притупляя их реакцию на сильные раздражители и тем самым отодвигая болевой порог. Очевидно, в течение миллионов лет это способствовало выживанию вида Homo sapiens. Вопрос в том, не окажется ли это свойство нашей психики роковым для человечества в современную эпоху.

Новости партнёров

Обозначим две задачи, которые периодически возникают в практике волновых аналитиков (рисунок 1).

Задача №1. На некотором рынке волна I соединила уровни 100 и 400. Третья волна стартовала на отметке 250 и достигла цели в 1000. Как соотносятся волны I и III?
Задача №2. На некотором рынке волна А соединила уровни 400 и 100. Волна С, которая началась на отметке 250, составляет 161.8% от А. На каком уровне завершается волна С?

Рисунок 1 - волновые формации в обычных координатах.


Рисунок 2 - волновые формации в логарифмических координатах.

Действующие волны в наших задачах весьма значительны (цены изменяются в разы) - на таких расстояниях нужно использовать логарифмический масштаб. Перестроим наш график в логарифмический (рисунок 2) и обозначим разворотные точки a-d (не путайте с волнами зигзага). Пропорции между волнами находим из уравнения:


Решения : в первой задаче третья волна равна первой - ln(1000/250)/ln(400/100)=1.
Во второй задаче ответ 26.5 пунктов, поскольку ln(250/26.5)/ln(400/100)=1.618. Эта задача имеет решение и при соотношении С=2.618А и даже при С=4.236А.

Когда использовать логарифмическую шкалу?

В известных книгах по волновой теории вопрос применения логарифмов толком не прояснён. Так или иначе признаётся, что прогресс цивилизации идёт логарифмически, а рост на 10 пунктов с уровня 10 и аналогичный рост с уровня 100 это два принципиально разных движения, которые не могут иметь одинаковый размер. Но где граница между традиционным арифметическим и логарифмическим масштабами?

На просторах сети можно встретить указание использовать логарифмы если изменение котировок превышает 3 раза. На первый взгляд, это логично, но при детальном рассмотрении появляется одна важная нестыковка - как поступать с волнами старших порядков, которые не укладываются в установленные рамки. Неужели придётся использовать сразу две шкалы - логарифмическую для глобальных разметок и обычную на каждый день?

Следующий пример наглядно поясняет всю противоречивость такого подхода. На рисунке 3 слева показан график курса доллара с 2014-го года в логарифмическом масштабе, а справа - традиционный ценовой график с лета 2015-го. Во втором случае мы имели полное право рисовать импульс с растянутой пятой, хотя логарифмы явно запрещали этот сценарий, ибо предполагаемая волна 3 оказалась короче первой, а растяжения не выполнялись от слова совсем.


Рисунок 3 - график USDRUB в логарифмических и обычных координатах.

Чтобы избежать подобных конфликтов и соблюсти единообразие я советую всегда использовать логарифмическую шкалу. Она универсальна. На старших фреймах она единственная покажет правильные пропорции между волнами и ей нет никакой альтернативы. Если ценовые изменения незначительны, то логарифмические пропорции совпадут с обычными арифметическими, так что мы ничего не нарушим и при этом нам не придётся переключаться с одного масштаба на другой.

Отмечу, что некоторые аналитики допускают возможность измерения волн не только в логарифмах, но и в разах или процентах. На мой взгляд, подобный подход является в чистом виде самодеятельностью и не имеет под собой никаких теоретических обоснований. Кроме того, совершенно не понятно как построить такие волны на графике.

Почему используется именно логарифм?

Давайте посмотрим откуда берутся логарифмические координаты. Как было сказано, рост на 10 пунктов с уровня 10 и аналогичный рост с уровня 100 это два разных движения. Чем выше поднимается рынок, тем проще ему расти относительно стартовой точки. Если мы планируем избавиться от этого казуса, нам придётся разбить всё движение на бесконечно мелкие части и поднимать точку отсчёта на каждом шаге.

Возьмём два дискретных процесса. Первый из них моделирует подвижную точку отсчёта - значение x начинается с единицы и на каждом шаге прирастает на k% от предыдущего. Второй процесс линейный – значение y начинается с нуля и на каждом шаге увеличивается на k% от единицы. Теперь найдём такое преобразование, которое свяжет процессы X и Y при бесконечно малом k.

Переход от обычной шкалы к логарифмической наглядно проиллюстрирован на рисунке 4. В линейном процессе (справа) размер шага постоянный и не зависит от того, с какого уровня начинается изменение цены. Логарифмический процесс (слева) избавлен от этого недостатка - чем больше текущее значение цены, тем больше дискретный шаг.


Рисунок 4 - сравнение процессов изменения цены в разных масштабах.

Как можно понять, логарифмический масштаб скрадывает изменения цены, сделанные в верхней части графика и растягивает тренды из «подвала». Так, волна роста по индексу Доу с 1974-го по 2001-ый год в обычной системе координат превысила 1200% от волны роста с 1942-го по 1966-ой годы. В логарифмах эти волны соотносятся в пропорции 1.27.
Изображение на главной странице взято из фотобанка Лори

Основные свойства счетной линейки и в первую очередь правило пропорций вытекают из того, что шкалы счетной линейки являются логарифмическими.

Шкала называется логарифмической , если на ней нанесены логарифмы чисел, а отметками шкалы являются сами числа.

На рисунке представлена логарифмическая шкала х рядом с равномерной шкалой у, на которой нанесены десятичные логарифмы чисел х.

у = lg x .

Равномерность шкалы у означает, что длина отрезка [у 1 , у 2 ] между любыми двумя точками у 1 и у 2 этой шкалы пропорциональна разности у 2 - у 1 В частности, последовательные целые точки, y = 0, 1, 2, ... находятся на равных расстояниях друг от друга. На шкале х: против точек у = 0, 1, 2, ... ставятся отметки х = 1, 10, 100.....так что логарифмическая шкала х оказывается уже неравномерной. Промежуточные отметки шкалы х могут быть нанесены с помощью таблицы десятичных логарифмов, например, отметки х = 2; 3; 4; 5 наносятся против значений у = 0,301; 0,478; 0,602; 0,699. Очевидно, что точки х = 1, 2, 3, 4, 5, ... будут при этом находиться на неравных расстояниях.

Логарифмическая шкала простирается неограниченно в обе стороны. Слева от точки х=1 находятся положительные числа, меньшие 1, десятичные логарифмы которых отрицательны. (Мы здесь и в дальнейшем будем употреблять термины «точка х» и «число х» как равносильные, подобно тому как это делается при работе с числовой осью.)

Основные шкалы А и В счетной линейки представляют собой только один отрезок логарифмической шкалы. Шкалы С и D представляют собой отрезок логарифмической шкалы, а шкала К - отрезок той же шкалы.

Шкала L представляет собой равномерную шкалу, точки 0 и 1 которой находятся соответственно против чисел 1 и 10 шкалы В из сказанного выше, а также из рисунка ясно, что шкала L дает десятичные логарифмы чисел шкалы В.

1. Вывод правила пропорций (см. раздел " "). Сначала найдем расстояние ρ [а, b] между двумя точками х = а и x = b (b > а) логарифмической шкалы. Воспользуемся для этого равномерностью шкалы у = lgx длина отрезка шкалы у, совпадающего с отрезком [а, b] шкалы х пропорциональна разности lgb - lga.

Обозначая коэффициент пропорциональности через λ, получим

В частности, расстояние любой точки х логарифмической шкалы от точки 1 пропорционально десятичному логарифму числа х

Коэффициент λ равен длине отрезка логарифмической шкалы (т. е. единице масштаба оси у), как видно из формулы

Возьмем теперь две одинаковые и параллельно расположенные логарифмические шкалы, которые мы обозначим через А и В. Сместим шкалу А относительно шкалы В и рассмотрим любые пары чисел а 1 и b 1 а 2 и b 2 , которые окажутся друг против друга на этих шкалах (см. раздел " ").

В силу формулы

равенство расстояний

равносильно равенству

Это значит, что для рассматриваемых чисел имеет место пропорция

Эта пропорция равносильна пропорции

которая и выражает доказываемое правило:

При любом смещении шкал А и В все числа шкалы А пропорциональны расположенным против них числам шкалы В .

Отметим, что доказанное правило пропорций относится ко всей бесконечной логарифмической шкале. Если бы мы имели возможность построить такую шкалу на счетной линейке, то мы могли бы вести расчеты с числами без их предварительной нормализации и без переброски движка. Необходимость нормализации исходных данных и применяемые в расчетах переброски движка вызваны тем, что на основных шкалах счетной линейки имеется только один отрезок логарифмической шкалы.

2. Свойство «периодичности» логарифмической шкалы. Из правила пропорций вытекает, что если шкалу А сдвинуть относительно шкалы В вправо на длину отрезка , то все числа шкалы В будут в 10 раз больше расположенных против них чисел шкалы А:

Отсюда следует, что логарифмическая шкала на отрезке как бы повторяет отрезок этой шкалы с увеличением всех чисел в 10 раз. Точно так же любой отрезок как бы повторяет отрезок с увеличением всех чисел в 10 n раз (n - целое). Благодаря этому свойству один отрезок позволяет восстановить путем последовательного смешения всю логарифмическую шкалу. Отмеченное свойство называется свойством периодичности логарифмической шкалы. Оно позволяет, в частности, обосновать правило переброски движка путем рассмотрения этой переброски как продолжения шкалы А или В. Далее, в силу того же свойства периодичности логарифмические шкалы С и D можно рассматривать как шкалы, состоящие каждая из двух отрезков , а это значит, что на них можно решать пропорции без переброски движка.

Наконец, свойство периодичности позволяет нанести логарифмическую шкалу на окружность, что вообще снимает вопрос о перебросках движка. Такие круговые логарифмические шкалы реализованы в конструкциях логарифмического диска «Спутник» (см. раздел " ") и описываемой в приложении 3 .

3. Постоянство относительной погрешности. Погрешность установки чисел на шкале определяется тем расстоянием, на которое по техническим правилам допускается смещение штрихов шкалы. Так как смещение штрихов, не превышающее допуска, может встретиться на любом участке шкалы, то для равномерной шкалы абсолютная погрешность установки чисел будет одна и та же на всем протяжении шкалы. Иначе обстоит дело на логарифмических шкалах. Здесь оказывается постоянной не абсолютная, а относительная погрешность установки чисел. Это означает следующее. Пусть при установке чисел а и b на логарифмической шкале их абсолютные погрешности А а и А b вызваны тем, что отметки а и b смещены на одно и то же расстояние. Тогда из равенства этих расстояний

как и в пункте 1, вытекает пропорция

что и выражает равенство относительных погрешностей установки чисел а и b.

По существующим техническим правилам смещение штрихов на обычных счетных линейках не должно превосходить 0,2 мм. Это значит, что предельное допустимое смещение любой отметки а составляет

Отсюда по формуле расстояний получаем

Для основных шкал А к В нормальной линейки коэффициент дающий длину отрезка шкалы, равен 250 мм, поэтому

а значит, относительная погрешность установки чисел на основных шкалах А и В нормальной счетной линейки составляет около 0,2%.

На шкалах С и D коэффициент К вдвое меньше (125 мм) и поэтому относительная погрешность установки чисел на этих шкалах вдвое больше (≈ 0,4%).

4. Построение шкал степенных функций . Рассмотрим сначала соответствие между шкалами В и С корпуса. Шкала В представляет собой отрезок логарифмической шкалы с масштабным коэффициентом λ 1 = 250 мм. Шкала С представляет собой отрезок логарифмической шкалы с масштабным коэффициентом λ 2 = λ 1 /2 = 125 мм причем 1 шкалы С находится против 1 шкалы В.

Поэтому если точка u шкалы С находится против точки х 0 шкалы В, то из равенства расстояний

Вот почему шкала С является шкалой квадратов для шкалы В. Аналогично строится шкала кубов К с масштабным коэффициентом λ 3 = λ 1 /3.

Шкала квадратов и шкала кубов являются простейшими шкалами степенной функции. Легко построить шкалу степенной функции u = х r при любом показателе r > 0. Для этого достаточно параллельно шкале В аргумента х поместить еще одну логарифмическую шкалу с масштабным коэффициентом

λ r = λ 1 / r

и установить число u = 1 этой шкалы против числа х = 1 шкалы В. Действительно, при этом для соответственных точек х и u по формуле расстояния имеем

откуда u = х r .

Таким путем можно построить на счетной линейке шкалу функции х r не только при любом целом, но и при любом дробном и даже иррациональном значении r. На обычных линейках ограничиваются случаями целых значений r = 2 и r = 3.

Заметим, что можно построить шкалу степенной функции и с отрицательным показателем r = -q, q > 0; для этого надо только изменить направление логарифмической шкалы u. Действительно, при изменении направления оси изменяется знак в формуле расстояния, и поэтому предидущая формула заменяется на следующую:

На обычных линейках подобные шкалы встречаются только для случая г = - 1 ().

Отношения величин отмеченных на концах этого отрезка, в то время как на шкале в линейном масштабе длина отрезка пропорциональна разности величин на его концах. Например, для десятичного логарифма каждый последующий отрезок на оси, больше предыдущего в 10 раз.

Наглядный пример употребления и полезности логарифмического масштаба - логарифмическая линейка , которая позволяет проводить довольно сложные вычисления с точностью два-три десятичных знака.

Логарифмическая шкала исключительно удобна для отображения очень больших диапазонов значений величин. Кроме того, для многих органов чувств величина ощущения пропорциональна логарифму воздействия. Например, в музыке ноты, различающиеся по частоте в два раза, воспринимаются как одна и та же нота на октаву выше, а интервал между нотами в полтона соответствует отношению их частот 2 1/12 . Поэтому нотная шкала - логарифмическая. Кроме того, согласно закону Вебера - Фехнера , воспринимаемая громкость звука также пропорциональна логарифму его интенсивности (в частности, логарифму мощности колонок). Поэтому на амплитудно-частотных характеристиках звуковоспроизводящих устройств применяют логарифмический масштаб по обеим осям.

Примеры применения логарифмического масштаба:

  • Шкала Рихтера интенсивности землетрясений
  • Шкала экспозиций в фотографии
  • Звёздные величины - шкала яркости звезд
  • Шкала
  • Шкала интенсивности звука - децибелы
  • Шкала частоты звука - нотная шкала

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Логарифмический масштаб" в других словарях:

    логарифмический масштаб - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN logarithmic scale …

    логарифмический масштаб - logaritminis mastelis statusas T sritis automatika atitikmenys: angl. logarithmic scale vok. logarithmischer Maßstab, m rus. логарифмический масштаб, m pranc. échelle logarithmyque, f … Automatikos terminų žodynas

    логарифмический масштаб - logaritminis mastelis statusas T sritis fizika atitikmenys: angl. logarithmic scale vok. Logarithmenskala, f; logarithmischer Maßstab, m rus. логарифмический масштаб, m pranc. échelle logarithmique, f … Fizikos terminų žodynas

    двойной логарифмический масштаб - двойная логарифмическая шкала — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы двойная логарифмическая шкала EN log log scale … Справочник технического переводчика

    - (scale (in graphs)) Отметки на каждой оси диаграммы, показывающие уровень цен, количество или значения других переменных. Всегда необходимо указывать используемый масштаб. Возможно применение любого масштаба; наиболее широко применяются… … Экономический словарь

    Наука о методах определения химического состава веществ. Химический анализ буквально пронизывает всю нашу жизнь. Его методами проводят скрупулезную проверку лекарственных препаратов. В сельском хозяйстве с его помощью определяют кислотность почв… … Энциклопедия Кольера

    - (АЧХ) функция, показывающая зависимость модуля некоторой комплекснозначной функции от частоты. Также может рассматриваться АЧХ других комплекснозначных функций частоты, например, спектральной плотности мощности сигнала. АЧХ в теории… … Википедия

    Амплитудно частотная характеристика (АЧХ) функция, показывающая зависимость модуля некоторой комплекснозначной функции от частоты. Чаще всего означает модуль комплексного коэффициента передачи линейного четырёхполюсника. Также может… … Википедия

    Раздел физики, в к ром изучается вз ствие металлов с эл. магн. волнами оптич. диапазона (электродинамич. св ва металлов). Для металлов характерны: большие коэфф. отражения волн R в широком диапазоне длин волн l, что связано с высокой… … Физическая энциклопедия

    У этого термина существуют и другие значения, см. Шкала (значения). Шкала это знаковая система, для которой задано гомоморфное отображение, ставящее в соответствие реальным объектам тот или иной элемент шкалы. Формально шкалой называют кортеж,… … Википедия