Теория СМО посвящена разработке методов анализа, проектирования и рациональной организации систем, относящихся к различным областям деятельности, таким как связь, вычислительная техника, торговля, транспорт, военное дело. Несмотря на все свое разнообразие, приведенные системы обладают рядом типичных свойств, а именно.

  • СМО (системы массового обслуживания) - это модели систем , в которые в случайные моменты времени извне или изнутри поступают заявки (требования). Они должны тем или иным образом быть обслужены системой. Длительность обслуживания чаще всего случайна.
  • СМО представляет собой совокупность обслуживающего оборудования и персонала при соответствующей организации процесса обслуживания.
  • Задать СМО – это значит задать ее структуру и статистические характеристики последовательности поступления заявок и последовательности их обслуживания.
Задача анализа СМО заключается в определении ряда показателей ее эффективности, которые можно разделить на следующие группы:
  • показатели, характеризующие систему в целом: число n занятых каналов обслуживания, число обслуженных (λ b ), ожидающих обслуживание или получивших отказ заявок (λ c ) в единицу времени и т.д.;
  • вероятностные характеристики : вероятность того, что заявка будет обслужена (P обс) или получит отказ в обслуживании (P отк), что все приборы свободны (p 0) или определенное число их занято (p k ), вероятность наличия очереди и т.д.;
  • экономические показатели : стоимость потерь, связанных с уходом не обслуженной по тем или иным причинам заявки из системы, экономический эффект, полученный в результате обслуживания заявки, и т.д.
Часть технических показателей (первые две группы) характеризуют систему с точки зрения потребителей , другая часть – характеризует систему с точки зрения её эксплуатационных свойств . Часто выбор перечисленных показателей, может улучшать эксплуатационные свойства системы, но ухудшать систему с точки зрения потребителей и наоборот. Использование экономических показателей позволяет разрешить указанное противоречие и оптимизировать систему с учетом обеих точек зрения.
В ходе выполнения домашней контрольной работы изучаются простейшие СМО. Это системы разомкнутого типа, бесконечный источник заявок в систему не входит. Входной поток заявок, потоки обслуживания и ожидания этих систем являются простейшими. Приоритеты отсутствуют. Системы однофазные.

Многоканальная система с отказами

Система состоит из одного узла обслуживания, содержащего n каналов обслуживания, каждый из которых может обслуживать только одну заявку.
Все каналы обслуживания одинаковой производительности и для модели системы неразличимы. Если заявка поступила в систему и застала хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка покидает систему не обслуженной.

Смешанные системы

  1. Система с ограничением на длину очереди .
    Состоит из накопителя (очереди) и узла обслуживания. Заявка покидает очередь и уходит из системы, если в накопителе к моменту ее появления уже находятся m заявок (m – максимально возможноечисло мест в очереди). Если заявка поступила в систему и застала, хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка не покидает систему, а занимает место в очереди. Заявка покидает систему не обслуженной, если к моменту её поступления в систему заняты все каналы обслуживания и все места в очереди.
    Для каждой системы определяется дисциплина очереди. Это система правил, определяющих порядок поступления заявок из очереди в узел обслуживания. Если все заявки и каналы обслуживания равнозначны, то чаще всего действует правило «кто раньше пришел, тот раньше обслуживается».
  2. Система с ограничением на длительность пребывания заявки в очереди .
    Состоит из накопителя (очереди) и узла обслуживания. От предыдущей системы она отличается тем, что заявка, поступившая в накопитель (очередь), может ожидать начала обслуживания лишь ограниченное время Т ож (чаще всего это случайная величина). Если её время Т ож истекло, то заявка покидает очередь и уходит из системы не обслуженной.

Математическое описание СМО

СМО рассматриваются как некоторые физические системы с дискретными состояниями х 0 , х 1 , …, х n , функционирующие при непрерывном времени t . Число состояний n может быть конечным или счетным (n → ∞). Система может переходить из одного состояния х i (i= 1, 2, … , n) в другое х j (j= 0, 1, … ,n) в произвольный момент времени t . Чтобы показать правила таких переходов, используют схему, называемую графом состояний . Для типов перечисленных выше систем графы состояний образуют цепь, в которой каждое состояние (кроме крайних) связано прямой и обратной связью с двумя соседними состояниями. Это схема гибели и размножения.
Переходы из состояния в состояние происходят в случайные моменты времени. Удобно считать, что эти переходы происходят в результате действия каких-то потоков (потоков входных заявок, отказов в обслуживании заявок, потока восстановления приборов и т.д.). Если все потоки простейшие, то протекающий в системе случайный процесс с дискретным состоянием и непрерывным временем будет марковским.
Поток событий - это последовательность однотипных событий, протекающих в случайные моменты времени. Его можно рассматривать как последовательность случайных моментов времени t 1 , t 2 , … появления событий.
Простейшим называют поток, обладающий следующими свойствами:
  • Ординарность . События следуют по одиночке (противоположность потоку, где события следуют группами).
  • Стационарность . Вероятность попадания заданного числа событий на интервал времени Т зависит только от длины интервала и не зависит от того, где на оси времени находиться этот интервал.
  • Отсутствие последействия . Для двух непересекающихся интервалов времени τ 1 и τ 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой интервал.
В простейшем потоке интервалы времени Т 1 , Т 2 ,… между моментами t 1 , t 2 , … появления событий случайны, независимы между собой и имеют показательное распределение вероятностей f(t)=λe -λt , t≥0, λ=const, где λ - параметр показательного распределения, являющийся одновременно интенсивностью потока и представляющий собой среднее число событий, происходящих в единицу времени. Таким образом, .
Марковские случайные события описываются обыкновенными дифференциальными уравнениями . Переменными в них служат вероятности состояний р 0 (t), p 1 (t),…,p n (t) .
Для очень больших моментов времени функционирования систем (теоретически при t → ∞) в простейших системах (системы, все потоки в которых – простейшие, а граф – схема гибели и размножения) наблюдается установившийся, или стационарный режим работы. В этом режиме система будет изменять свое состояние, но вероятности этих состояний (финальные вероятности ) р к , к= 1, 2 ,…, n, не зависят от времени и могут рассматриваться как среднее относительное время пребывания системы в соответствующем состоянии.

4 – Основы теории массового обслуживания.

Определение 1. Пусть имеется некоторая физическая система S , которая с течением времени меняет свое состояние (переходит из одного состояния в другое), причем заранее неизвестным, случайным образом. Тогда мы будем говорить, что в системе S протекает случайный процесс.

Под «физической системой» можно понимать что угодно: техническое устройство, предприятие, живой организм и т.д.

Пример. S техническое устройство, состоящее из ряда узлов, которые время от времени выходят из строя, заменяются или восстанавливаются. Процесс, протекающий в системе, – случайный. Вообще, если подумать, труднее привести пример «неслучайного» процесса, чем случайного. Даже процесс хода часов – классический пример точной, строго выверенной работы («работают как часы») подвержен случайным изменениям (уход вперед, отставание, остановка).

Определение 2. Случайный процесс, протекающий в системе, называется марковским, если для любого момента времени t 0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t 0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t 0 система находится в определенном состоянии S 0 . Мы наблюдаем процесс со стороны и в момент t 0 знаем состояние системы S 0 и всю предысторию процесса, все, что было при t < t 0 . Нас, естественно. Интересует будущее: t > t 0 . Можем ли мы его предугадать? В точности – нет. Наш процесс случайный, следовательно – непредсказуемый. Но какие-то вероятностные характеристики процесса в будущем мы найти можем. Например, вероятность того, что через некоторое время t система S окажется в состоянии S 1 или сохранит состояние S 0 и т.д.

Если процесс марковский, то предсказывать можно, только учитывая настоящее состояние системы S 0 и забыв о его «предыстории» (поведение системы при t < t 0 ). Само состояние S 0 , разумеется, зависит от прошлого, но как только оно достигнуто, о прошлом можно забыть. Т.е. в марковском процессе «будущее зависит от прошлого только через настоящее» .

Пример. Система S – счетчик Гейгера, на который время от времени попадают космические частицы; состояние системы в момент времени t характеризуется показаниями счетчика – числом частиц, пришедших до данного момента. Пусть в момент t 0 счетчик показывает S 0 . Вероятность того, что в в момент t > t 0 счетчик покажет то или другое число частиц S 1 (или менее S 1 ) зависит от S 0 , но не зависит от того, в какие именно моменты приходили частицы до момента t 0 .

На практике часто встречаются процессы, которые если не в точности марковские, то могут быть в каком-то приближении рассмотрены как марковские. Например, S ­ – группа самолетов, участвующих в воздушном бою. Состояние системы характеризуется числом самолетов «красных» – x и «синих» – y , сохранившихся (не сбитых) к какому-то моменту. В момент t 0 нам известны численности сторон x 0 и y 0 . Нас интересует вероятность того, что в какой-то момент времени t 0 + t численный перевес будет на стороне «красных». От чего зависит эта вероятность? В первую очередь от того, в каком состоянии находится система в данный момент времени t 0 , а не от того, когда и в какой последовательности погибали сбитые до момента времени t 0 самолеты.

В сущности любой процесс можно рассматривать как марковский, если все параметры из «прошлого», от которых зависит «будущее», перенести в «настоящее». Например, пусть речь идет о работе какого-то технического устройства; в какой-то момент времени t 0 оно ещё исправно, и нас интересует вероятность того, что оно проработает ещё время t . Если за настоящее время считать просто «система исправна», то процесс безусловно не марковский, потому что вероятность, что она не откажет за время t , зависит, в общем случае, от того, сколько времени она уже проработала и когда был последний ремонт. Если оба эти параметра (общее время работы и время после ремонта) включить в настоящее состояние системы. То процесс можно будет считать марковским.

Определение 3. Процесс называется с дискретными состояниями, если его возможные состояния S 1 , S 2 ,... можно заранее перечислить (перенумеровать), и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Определение 4. Процесс называется процессом с непрерывным временем, если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны, если переход может осуществиться, в принципе, в любой момент.

Мы будем рассматривать только процессы с дискретными состояниями.

Пример. Техническое устройство S состоит из двух узлов. Каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время.

Рис.4.1

Возможные состояния системы:

S 0 – оба узла исправны;

S 1 – первый узел ремонтируется, второй исправен;

S 2 – второй узел ремонтируется, первый исправен;

S 3 – оба узла ремонтируются.

Стрелка, направленная из S 0 в S 1 означает момент отказа первого узла и т. д. На рисунке нет стрелки из состояния S 0 в состояние S 3 , поскольку вероятность того, что два прибора откажут одновременно, стремится к нулю.

Определение 5. Потоком событий называется последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (например, поток сбоев на ЭВМ, поток вызовов на телефонной станции).

Важнейшей характеристикой потока событий является его интенсивность l – среднее число событий, приходящееся на единицу времени. интенсивность потока может быть постоянной (l = const ), так и переменной, зависящей от времени. Например, поток автомашин, движущихся по улице, днем интенсивнее, чем ночью, а поток автомашин с 14-ти до 15-ти часов дня можно считать постоянным.

Определение 6. Поток событий называется регулярным, если события следуют одно за другим через определенные, равные промежутки времени.

Определение 7. Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени. В частности, интенсивность l стационарного потока должна быть постоянной. Это отнюдь не означает, что фактическое число событий, появляющееся в единицу времени, постоянно, – нет, поток неизбежно (если только он не регулярный) имеет какие-то случайные сгущения и разрежения. Важно, что для стационарного потока эти сгущения и разрежения не носят закономерного характера: на один участок длины 1 может попасть больше, а на другой – меньше событий, но среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Например, поток вызовов, поступающих на АТС между 13 и 14 часами. Практически стационарен, но тот же поток в течение суток уже не стационарен.

Определение 8. Поток событий называется потоком без последействия, если для любых двух непересекающихся участков времени t 1 и t 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. По сути это означает, что события, образующие поток, появляются в те или другие моменты независимо друг от друга, вызванные каждое своими собственными причинами.

Например, поток пассажиров, входящих в метро, практически не имеет последействия. А вот поток покупателей, отходящих от прилавка с купленными товарами, уже имеет последействие (хотя бы потому, что интервал времени между отдельными покупателями не может быть меньше, чем минимальное время обслуживания каждого из них).

Определение 9. Поток событий называется ординарным, если события в нем появляются поодиночке, а не группами сразу.

Например поток клиентов к зубному врачу – обычно ординарный. Поток поездов, подходящих к станции – ординарен, а поток вагонов – неординарен.

Определение 10. Поток событий называется простейшим (или стационарным Пуассоновским), если он обладает сразу тремя свойствами: стационарен, ординарен и не имеет последействия, а сам входной поток распределен по закону Пуассона ().

Для описания случайного процесса, протекающего в системе с дискретными состояниями S 1 , S 2 , ..., S n часто пользуются вероятностями состояний p 1 ( t ),..., p n ( t ) , где p k ( t ) – вероятность того, что в момент времени t система находится в состоянии S k . Вероятности p k ( t ) удовлетворяют условию: .

Если процесс, протекающий в системе с дискретными состояниями и непрерывным временем является марковским, то для вероятностей состояний p 1 ( t ), ..., p n ( t ) можно составить систему линейных дифференциальных уравнений. При составлении этих уравнений удобно пользоваться графом состояний системы, на котором против каждой стрелки, ведущей из состояния в состояние, проставлена интенсивность потока событий, переводящего систему по стрелке (рис.4.2):

Рис.4.2

l ij – интенсивность потока событий, переводящего систему из состояния S i в состояние S j .

Правило создания системы линейных дифференциальный уравнений для нахождения вероятностей состояний.

Для каждого состояния выписывается собственное уравнение. В левой части каждого уравнения стоит производная , а в правой – столько членов, сколько стрелок связано непосредственно с данным состоянием; если стрелка ведет в данное состояние, то член имеет знак «+», иначе - знак «–». Каждый член равен интенсивности потока событий, переводящего систему по данной стрелке, умноженной на вероятность того состояния, из которого стрелка выходит.

Т.о. система линейных дифференциальных уравнений в нашем случае имеет вид:

Начальные условия для интегрирования такой системы отражают состояние системы в начальный момент времени. Если, например, система при t =0 была в состоянии S k , то . Эти уравнения можно решать аналитически, но это удобно только тогда, когда число уравнений не превышает двух (иногда трех). В случае, когда уравнений оказывается больше, применяют численные методы.

Что будет происходить с вероятностями состояний при ? Будут ли p 1 ( t ), ..., p n ( t ) стремиться к каким-то пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний: . p i – среднее относительное время пребывания системы в i -ом состоянии.

Как найти финальные вероятности? Поскольку все p i = const , то производные, стоящие в левой части каждого уравнения равны нулю. Т.о. мы получили систему линейных алгебраических уравнений. Поскольку ни одно уравнение в этой системе не имеет свободного члена, то система является вырожденной (т.е. все переменные будут выражены через одну). Чтобы этот избежать, необходимо воспользоваться нормировочным условием (), при этом любое уравнение можно отбросить.

Классификация систем массового обслуживания

По количеству обслуживающих приборов СМО делятся на одноканальные и многоканальные. Многоканальные СМО состоят из нескольких приборов, и каждый них может обслуживать заявку.

Также СМО подразделяются на системы без ожидания и с ожиданием. В первых заявка покидает очередь, если к моменту её прихода отсутствует хотя бы один канал, способный немедленно приступить к обслуживанию данной заявки. Вторые, в свою очередь, делятся на системы без ограничения и с ограничениями по длине очереди.

Также СМО делятся на системы с приоритетами и без них. В свою очередь системы с приоритетом делятся на СМО с прерыванием и без.

Одноканальная СМО с неограниченной очередью


Рис.4.3

Найдем вероятности p k :

Для состояния S 0 : , отсюда ;

Для состояния S 1 n : , подставляем полученное значение для p 1 : . Аналогично, .

Вероятность p 0 найдем из нормировочного условия :

, геометрическая прогрессия, при r <1 сходится. – вероятность того, что нет заявок.

– вероятность того, что прибор занят обслуживанием заявки. r = l / m – мера загрузки одноканальной СМО.

В текущий момент времени в системе может быть 0, 1, 2, ..., k , ... заявок с вероятностями p 0 , p 1 p 2 , ... Математическое ожидание количества заявок:

учитывая, что , получим:

Средняя длина очереди равна разности между средним числом заявок в системе и средним числом заявок, находящихся под обслуживанием: .

Формулы Литтла

Рис.4.4

Первая формула Литтла позволяет определить время реакции СМО (время пребывания заявки в системе).

Пусть X ( t ) – число заявок, поступивших в СМО до момента времени t , Y ( t ) – покинувших СМО до t . Обе функции случайны и увеличиваются скачком на единицу в моменты прихода и ухода заявок. Тогда число заявок в системе в момент времени t можно определить как: . Рассмотрим очень большой промежуток времени T и вычислим среднее число заявок в системе:

.

Интеграл равен площади ступенчатой фигуры, ограниченной функциями X ( t ) и Y ( t ) , эта сумма состоит из прямоугольников, ширина которых равна единице, а длина – времени пребывания i -ой заявки в системе. Сумма распространяется на все заявки, поступившие в систему за время T . Правую часть домножим и разделим на l : . T l – среднее количество заявок, пришедших за время T . Поделив сумму всех времен t i на среднее число заявок, получим среднее время пребывания заявки в системе: .

Совершенно аналогично можно получить среднее время пребывания заявки в очереди: .

Многоканальная СМО с неограниченной очередью


Рис.4.5

Найдем вероятности p k :

Для состояния S 0 : ;

Для состояний S 1 S n : ;

Для S n +1 : ; ...

Для S n+s-1 : ;

Для S n+s : .

Из первых n +1 уравнений получаем:

Из последнего уравнения выражаем: и подставляем в предпоследнее: , . Тогда .

Продолжая аналогию: .

Теперь найдем p 0 , подставив полученные выражения в нормировочное условие (): . Отсюда .

Показатели эффективности СМО

– Вероятность потери требования в СМО. Особенно часто ею пользуются при исследовании военных вопросов. Например, при оценке эффективности противовоздушной обороны объекта она характеризует вероятность прорыва воздушных целей к объекту. Применительно к СМО с потерями она равна вероятности занятости обслуживанием требований всех n приборов системы. Чаще всего эту вероятность обозначают p n или p отк .

– Вероятность того, что обслуживанием требований в системе занято k приборов, равна p k .

– Среднее число занятых приборов: характеризует степень загрузки обслуживающей системы.

– Среднее число свободных от обслуживания приборов:.

– Коэффициент простоя приборов: .

– Коэффициент занятости оборудования: .

– Средняя длина очереди: , p k - вероятность того, что в системе находится k требований.

– Среднее число заявок, находящихся в сфере обслуживания: .

– Вероятность того, что число заявок в очереди, ожидающих начала обслуживания, больше некоторого числа m : . Этот показатель особенно необходим при оценке возможностей размещения требований при ограниченности времени для ожидания.

Кроме перечисленных критериев при оценке эффективности СМО могут быть использованы стоимостные показатели:

q об – стоимость обслуживания каждого требования в системе;

q ож – стоимость потерь, связанных с простаиванием заявок в очереди в единицу времени;

q у – убытки, связанные с уходом из системы заявки;

q k – стоимость эксплуатации каждого прибора в единицу времени;

q k пр – стоимость простоя единицы времени k -го прибора системы.

При выборе оптимальных параметров СМО по экономическим показателям можно использовать функцию стоимости потерь в системе (для СМО с ожиданием): T – интервал времени.

Для СМО с отказами: .

Для смешанных: .

Критерий экономической эффективности СМО: , с – экономический эффект, получаемый при обслуживании каждой заявки.

СМО замкнутого типа

Пример. С1, С2, С3 – станки; НЦ – центральный накопитель; B – манипулятор. Транспортная тележка (манипулятор) транспортирует отработанную деталь от станка к накопителю и укладывает ее там, забирает новую деталь (заготовку), транспортирует ее к станку и устанавливает в рабочую позицию для зажима. Во время всего периода, необходимого для выгрузки–загрузки, станок простаивает. Время T з смены заготовки и есть время обслуживания.

Интенсивность обслуживания станков определяется как , – среднее время обслуживания станка, которое вычисляется как , где n – число заявок. Интенсивность подачи станком заявки на обслуживание определяется как (где – среднеее время обработки детали станком).

Станочная система с однозахватным манипулятором представляет собой СМО с ожиданием с внутренней организацией FIFO : каждая заявка станка на обслуживание удовлетворяется, в случае когда манипулятор занят, заявка становится в очередь и станок ожидает когда манипулятор освободится. Данный процесс марковский, т.е. случайная выдача заявки на обслуживание в определенный момент времени t 0 не зависит от предыдущих заявок, т.е. от течения процесса в предшествующий период. Продолжительность исполнения заявки может быть различной и является случайной величиной, не зависящей от числа поданных заявок. Весь процесс не зависит от того, что произошло ранее момента времени t 0 .

В станочной системе число заявок на обслуживание может быть равно 0, 1, 2, ... m , где m – общее число станков. Тогда возможны следующие состояния:

S 0 – все станки работают, манипулятор стоит.

S 1 – все станки, кроме одного, работают, манипулятор обслуживает станок, от которого поступила заявка на смену заготовок.

S 2 – работают m -2 станка, на одном станке идет смена заготовки, другой ожидает.

S 3 – работают m -2 станка, один станок обслуживается манипулятором, два станка ожидают в очереди.

S m – все станки стоят, один обслуживается манипулятором, остальные ожидают очереди исполнения заказа.

Рис.4.6.

Вероятность перехода в состояние S k из одного из возможных состояний S 1 , S 2 , ... S m зависит от случайного поступления заявок на обслуживание и вычисляется как:

p 0 – вероятность того, что все станки работают.

Манипулятор работает при состояниях системы от S 1 до S m ­ . Тогда вероятность его загрузки равна: .

Число станков, находящихся в очереди связано с состояниями S 2 , – S m , при этом один станок обслуживается, а (k -1) – ожидают. Тогда, среднее число станков в очереди: .

Коэффициент простоя одного станка (из-за ожидания при многостаночном обслуживании): .

Среднее использование одного станка:

Применение метода Монте-Карло для решения задач,

связанных с теорией массового обслуживания

Для того, чтобы описать поток однородных событий, достаточно знать закон распределения моментов времени t 1 , t 2 , ..., t k , ..., в которые поступают события.

Для удобства дальнейших рассмотрений целесообразно от величин t 1 , t 2 , ..., перейти к случайным величинам z 1 , z 2 , ..., z m , ... , таким образом, что:

Случайные величины z k являются длинами интервалов времени между последовательными моментами t k .

Совокупность случайных величин z i считается заданной, если определена совместная функция распределения: . Обычно рассматриваются только непрерывные случайные величины z k , поэтому часто пользуются соответствующей функцией плотности f ( z 1 , z 2 ,..., z k ) .

Обычно в теории СМО рассматриваются потоки однородных событий без последействия, для которых случайные величины z k независимы. Поэтому . Функции f i ( z i ) при i >1 представляют собой условные функции плотности при условии, что в начальный момент интервала z k ( i >1) поступила заявка. В отличие от этого функция f 1 ( z 1 ) является безусловной функцией плотности, т.к. относительно появления или непоявления заявки в начальный момент времени не делается никаких предположений.

Широкое применение имеют так называемые стационарные потоки, для которых вероятностный режим их во времени не изменяется (т.е. вероятность появления k заявок за промежуток времени (t 0 , t 0 + t ) не зависит от t 0 , а зависит только от t и k ). Для стационарных потоков без последействия имеют место соотношения:

где l – плотность стационарного потока.

Поступившая в систему заявка может занимать только свободные линии. Относительно порядка занятия линий могут быть сделаны различные предположения:

а) линии занимаются в порядке их номеров. Линия с большим номером не может быть привлечена к обслуживанию заявки, если имеется свободная линии с меньшим номером;

б) линии занимаются в порядке очереди. Освободившаяся линия поступает в очередь и не начинает обслуживания заявок до израсходования всех ранее освободившихся линий;

в) линии занимаются в случайном порядке в соответствии с заданными вероятностями. Если в момент поступления очередной заявки имеется n св свободных линий, то в простейшем случае вероятность занять некоторую определенную линию может быть принята равной . В более сложных случаях вероятности считаются зависящими от номеров линий, моментов их освобождения и других параметров.

Аналогичные предположения можно сделать и относительно порядка принятия заявок к обслуживанию в том случае, когда в системе образуется очередь заявок:

а) заявки принимаются к обслуживанию в порядке очереди. Освободившаяся линия приступает к обслуживанию той заявки, которая ранее другой поступила в систему;

б) заявки принимаются к обслуживанию по минимальному времени получения отказа. Освободившаяся линия приступает к обслуживанию той заявки, которая в кратчайшее время может получить отказ;

в) заявки принимаются к обслуживанию в случайном порядке в соответствии с заданными вероятностями. Если в момент освобождения линии имеется m заявок в очереди, то в простейшем случае вероятность выбрать для обслуживания некоторую определенную заявку может быть принята равной q =1/ m . В более сложных случаях вероятности q 1 , q 2 ,..., q m считаются зависящими от времени пребывания заявки в системе, времени, остающегося до получения отказа и других параметров.

· Для решения ряда прикладных задач оказывается необходимым учитывать такой важный фактор, как надежность элементов обслуживающей системы. Будем предполагать, что с точки зрения надежности каждая линия в данный момент времени может быть либо исправной, либо неисправной. Надежность линии определяется вероятностью безотказной работы R = R ( t ) , задаваемой как функция времени. Будем также предполагать, что линия, вышедшая из строя по причине неполной надежности, может быть введена в строй (отремонтирована), для чего требуется затратить время t p . Величину t p будем считать случайной величиной с заданным законом распределения.

Относительно судьбы заявки, при обслуживании которой линия выходит из строя, могут быть сделаны различные предположения: заявка получает отказ; заявка остается в системе (с общим временем пребывания в системе не более t n ) как претендент на обслуживание вне очереди; заявка поступает в очередь и обслуживается на общих основаниях и т.д.

Сущность метода статистических испытаний применительно к задачам массового обслуживания состоит в следующем. Строятся алгоритмы, при помощи которых можно вырабатывать случайные реализации заданных потоков однородных событий, а также «моделировать» процессы функционирования обслуживающих систем. Эти алгоритмы используются для многократного воспроизведения реализаций случайного процесса обслуживания при фиксированных условиях задачи. Получаемая при этом информация о состояниях процесса подвергается статистической обработке с целью оценки, являющихся показателями качества обслуживания.

Метод статистических испытаний позволяет более полно, по сравнению с асимптотическими формулами, исследовать зависимость качества обслуживания от характеристик потока заявок и параметров обслуживающей системы.

Это достигается благодаря двум обстоятельствам. Во-первых, при решении задач теории массового обслуживания методом статистических испытаний может быть использована более обширная информация о процессе, чем это обычно удается сделать, применяя аналитические методы.

С другой стороны, значения показателей качества обслуживания, получаемые из асимптотических формул, строго говоря, относятся к моментам времени, достаточно удаленным от начала процесса. Реально, для моментов времени, близких к началу процесса, когда еще не наступил стационарный режим, значения показателей качества обслуживания в общем случае существенно отличаются от асимптотических значений. Метод статистических испытаний позволяет достаточно обстоятельно изучать переходные режимы.

Для многих прикладных задач предположения, при которых справедливы аналитические формулы, оказываются слишком стеснительными. При решении задач методом статистических испытаний некоторые предположения могут быть существенно ослаблены.

В первую очередь это относится к многофазному обслуживанию (т.е. рассматриваются обслуживающие системы, состоящие из нескольких последовательно действующих в общем случае неоднотипных агрегатов).

Другим важным обобщением задачи является предположение о характере потока заявок, поступающих на обслуживание. Допускается рассмотрение потоков однородных событий с практически произвольным законом распределения. Последнее обстоятельство оказывается существенным по следующим двум причинам. Во-первых, реальные потоки заявок в некоторых случаях заметно отличаются от простейшего. Для пояснения второй причины предположим, что исходный поток заявок достаточно точно аппроксимируется простейшим потоком. При этом поток заявок, обслуженных на первой фазе, уже, строго говоря не будет простейшим. Поскольку поток, являющийся выходным для первой фазы, будет входным потоком для агрегата, обслуживающего заявки на второй фазе, мы снова приходим к задаче обслуживания потоков, не являющимися простейшими.

· Структура алгоритма, моделирующего

процесс обслуживания заявок

Рассмотрим однофазную СМО, имеющую n линий, на которые поступают заявки в случайные моменты времени t i . Если вмомент поступления заявки оказываются в наличии свободные линии (их число n св ), заявка занимает одну из них на время t p . В противном случае заявка находится в системе до момента t n , ожидая обслудивания. В т t чение времени ожидания некоторые линии могут освободиться (их число m ), и в этом случае будет возможность обслужить заявку. Если до момента времени t n ни одна из линий не освобождается (m =0 ), заявка получает отказ.

Будем считать, что в силу недостаточно высокой надежности системы, линии обслуживающие заявку, могут выходить из строя, тогда заявка получает отказ, а линия может быть отремонтирована и через промежуток времнеи t pem введена в строй.

Для исследования качества обслуживания заявок предусматривается N * кратное моделирование процесса функционирования системы в интервале (0, T ) . В процессе моделирования число обследованных реализаций обозначим через N .

Алгоритм:

1. Определяется момент t i поступления очередной заявки в систему.

2. Если t i < T , то переход на шаг 3, иначе – на шаг 11.

3. Проверка возможности обслужить поступившую заявку: если n св >0 , то переход на шаг 4, иначе – на шаг 12. (Значение времени поступления заявки t i сравнивается с t осв для всех линий, т.о. выявляются свободные линии.)

4.Если n св >1 , то переход на шаг 5, иначе – на шаг 6.

5. Выбирается номер свободной линии по специальным правилам.

6. Назначается выбранная линия.

7. Проверка: имеет ли место срыв обслуживания по причине недостаточной надежности? Если да, то переход на шаг 8, иначе – на шаг 10.

8. Определение времени t рем ремонта линии, вышедшей из строя (t рем имеет определенный закон распределения).

9. N отк = N отк +1 . Переход на шаг 1.

10. Определение времени занятости t з линии, которая назначена обслуживать заявку (некая случайная величина с определенным законом распределения) и времени освобождения линии: t осв = t i + t з . Переход к очередной заявке (шаг 1).

11. Проверка: если N < N * , то N = N +1 и переход на шаг 1, иначе – обработка результатов опыта и конец.

12. Определить:

А) времени t n пребывания заявки в системе;

Б) число освободившихся каналов m за время t n .

13. Если m >0 , то переход на шаг 14, иначе – на шаг 9.

14. Если m >1 , то переход на шаг 15, иначе – на шаг 6.

15. Выбирается определенная линия в соответствии с принятыми правилами и переход на шаг 6.

массовый обслуживание инвестиция

Практическая деятельность человека тесно связана с различного рода системами массового обслуживания. В области экономики - это банковское обслуживание, пользование объектами торговли и услугами сферы обслуживания и многие другие виды экономической деятельности.

Системы массового обслуживания (СМО)-- это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания. С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди, с тем, чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания. Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Любая система массового обслуживания может включать в себя следующие элементы:

  • 1. Входной поток требований или заявок на обслуживание. Этот элемент является основным. Изучение входящего потока требований и его описание необходимо при организации любой системы массового обслуживания.
  • 2. Очередь. В тех случаях, когда поступающие в систему массового обслуживания требования не могут быть удовлетворены немедленно, возникает очередь. В такой ситуации интерес может представлять длина этой очереди, порядок, по которому ожидающие требования направляются на обслуживание (как говорят, дисциплина очереди), время ожидания.

В отдельных случаях систем массового обслуживания очереди не допускаются, т.е. требование, заставшее систему занятой, не обслуживается (получает отказ).

  • 3. Обслуживающее устройство. Этот элемент присутствует в любой системе массового обслуживания. От характеристик и параметров, способов организации обслуживающего устройства зависит не только время, необходимое на обслуживание одного требования, но и длина очереди и время ожидания.
  • 4. Выходной поток обслуженных требований. Этот элемент может оказаться очень важным в тех случаях, когда выходящий поток обслуженных требований является входящим для другой системы массового обслуживания.

Рис. 1

Как правило, число требований на входе системы массового обслуживания за какой-либо промежуток времени и время обслуживания одного требования являются случайными величинами.

Системы массового обслуживания классифицируются по разным признакам.

1. На группы в зависимости от состава и от времени пребывания в очереди до начала обслуживания, и от дисциплины обслуживания требований.

По составу СМО бывают одноканальные (с одним обслуживающим устройством) и многоканальными (с большим числом обслуживающих устройств). Многоканальные системы могут состоять из обслуживающих устройств как одинаковой, так и разной производительности.

По времени пребывания требований в очереди до начала обслуживания системы делятся на три группы:

с неограниченным временем ожидания (с ожиданием),

с отказами;

смешанного типа.

В СМО с неограниченным временем ожидания очередное требование, застав все устройства занятыми, становится в очередь и ожидает обслуживания до тех пор, пока одно из устройств не освободится.

В системах с отказами поступившее требование, застав все устройства занятыми, покидает систему. Классическим примером системы с отказами может служить работа автоматической телефонной станции.

В системах смешанного типа поступившее требование, застав все устройства занятыми, становятся в очередь и ожидают обслуживания в течение ограниченного времени. Не дождавшись обслуживания в установленное время, требование покидает систему.

  • 2. В системах с определенной дисциплиной обслуживания поступившее требование, застав все устройства занятыми, в зависимости от своего приоритета, либо обслуживается вне очереди, либо становится в очередь.
  • 3. По числу каналов обслуживания СМО делятся на одно- и многоканальные.
  • 4. По количеству этапов обслуживания различают однофазные и многофазные системы.
  • 5. По месту нахождения источника требований СМО делятся на разомкнутые (источник требования вне системы) и замкнутые (источник в самой системе). Примером разомкнутой системы может служить ремонтная мастерская. Здесь неисправная техника - это источник требований, находящийся вне системы, число требований можно считать неограниченным. К замкнутым СМО относится, например, станочный участок, в котором станки являются источником неисправностей, а, следовательно, источником требований на их обслуживание, например, бригадой ремонтников.

Методы и модели исследования СМО можно условно разбить на аналитические и статистические.

Аналитические методы позволяют получить характеристики системы как некоторые функции от параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО.

Но, к сожалению, аналитические модели исследования операций зачастую не могут успешно применяться при принятии решений. Причина кроется в том, что математические модели, имеющие надежные методы вычисления, являются слишком упрощенными и неадекватны реальным процессам, либо не могут быть реализованы в силу вычислительных трудностей.

В таком случае используется имитационное моделирование, которое состоит в компьютерном моделировании реальной производственной ситуации.

Но на сегодняшний день, для решения задач массового обслуживания, теоретически наиболее разработаны и удобны в практических приложениях методы решения, в которых поток требований является простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, то есть вероятность поступления за время t ровно k требований задается формулой

где л - параметр, интенсивность входящего потока заявок.

Простейший поток обладает тремя основными свойствами:

Ординарность -- когда вероятность одновременного появления двух и более событий равна нулю.

Стационарность -- когда вероятность попадания того или иного числа событий на участок времени, зависит только от длины этого участка.

Отсутствие последействий -- когда вероятность не зависит от момента совершения предыдущих событий.

Важной характеристикой СМО является время обслуживания требований в системе. Время обслуживания одного требования является, как правило, случайной величиной и, следовательно, может быть описано законом распределения. Наибольшее распространение в теории и, особенно в практических приложениях получил экспоненциальный закон распределения времени обслуживания.

Функция распределения для этого закона имеет вид

То есть вероятность того, что время обслуживания не превосходит некоторой величины t, определяется формулой, где м - параметр экспоненциального закона распределения времени обслуживания требований в системе (интенсивность обслуживания) - величина, обратная среднему времени обслуживания, то есть

Теперь стоит привести некоторые аналитические модели исследования т расчета основных характеристик СМО.

Типичная постановка задачи, решаемой с помощью теории массового обслуживания, состоит в следующем: по заданному входящему потоку требований, известной дисциплине обслуживания и известному закону распределения времени обслуживания требования нужно оценить качество и эффективность функционирования СМО и выявить возможность их улучшения. Рассмотрим примеры:

1. Одноканальная СМО с отказами.

Пусть одноканальная СМО с отказами представляет собой один пост ежедневного обслуживания для мойки автомобилей. Заявка -- автомобиль, прибывший в момент, когда пост занят, -- получает отказ в обслуживании. Интенсивность потока автомобилей л 1,0 (автомобиль в час). Средняя продолжительность обслуживания -- tоб=1,8 часа.

Требуется определить в установившемся режиме предельные значения:

относительной пропускной способности q;

абсолютной пропускной способности А;

вероятности отказа Ротк;

Сравнить фактическую пропускную способность СМО с номинальной, которая была бы, если бы каждый автомобиль обслуживался точно 1,8 часа и автомобили следовали один за другим без перерыва.

Определим интенсивность потока обслуживания:

Вычислим относительную пропускную способность:

Величина q означает, что в установившемся режиме система будет обслуживать примерно 35% прибывающих на пост автомобилей.

Абсолютную пропускную способность определим по формуле:

А=лЧq=1Ч0,356=0,356.

Это означает, что система способна осуществить в среднем 0,356 обслуживания автомобилей в час.

Вероятность отказа:

Ротк=1-q=1-0,356=0,644.

Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в обслуживании.

Определим номинальную пропускную способность системы:

Аном= (автомобилей в час).

Оказывается, что Аном в раза больше, чем фактическая пропускная способность, вычисленная с учетом случайного характера потока заявок и времени обслуживания.

2. Одноканальная СМО с ожиданием и ограниченной очередью.

Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, ограниченно и равно 3, то есть (N-- 1)=3. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток автомобилей, прибывающих на диагностику, имеет интенсивность л=0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно =1,05 час.

Требуется определить вероятностные характеристики поста диагностики, работающего в стационарном режиме.

Интенсивность потока обслуживаний автомобилей:

Приведенная интенсивность потока автомобилей определяется как отношение интенсивностей л и м, т.е.

Вычислим вероятности нахождения п заявок в системе:

P1=r P0=0,893 0,248=0,221; P2=r2 P0=0,8932 0,248=0,198;

P3=r3 P0=0,8933 0,248=0,177; P4=r4 P0=0,8934 0,248=0,158.

Вероятность отказа в обслуживании автомобиля:

Pотк=Р4=r4 P0?0,158.

Относительная пропускная способность поста диагностики:

q=1-Pотк=1-0,158=0,842.

Абсолютная пропускная способность поста диагностики. А=л q=0,85 0,842=0,716 (автомобиля в час).

Среднее число автомобилей, находящихся на обслуживании и в очереди (т.е. в системе массового обслуживания):

Среднее время пребывания автомобиля в системе:

Средняя продолжительность пребывания заявки в очереди на обслуживание:

Wq=Ws-1/м=2,473-1/0,952=1,423 часа.

Среднее число заявок в очереди (длина очереди):

Lq=л (1-PN) Wq=0,85 (1-0,158) 1,423=1,02.

Работу рассмотренного поста диагностики можно считать удовлетворительной, так как пост диагностики не обнаруживает автомобили в среднем в 15,8% случаев (Ротк=0,158).

3. Одноканальная СМО с ожиданием и неограниченной очередью.

Вспомнив о ситуации, рассмотренной в предыдущем примере, где речь идет о функционировании поста диагностики. Пусть рассматриваемый пост диагностики располагает неограниченным количеством площадок для стоянки прибывающих на обслуживание автомобилей, т.е. длина очереди не ограничена.

Требуется определить финальные значения следующих вероятностных характеристик:

вероятности состояний системы (поста диагностики);

среднее число автомобилей, находящихся в системе (на обслуживании и в очереди);

среднюю продолжительность пребывания автомобиля в системе

(на обслуживании и в очереди);

среднее число автомобилей в очереди на обслуживании;

среднюю продолжительность пребывания автомобиля в очереди.

Решение Параметр потока обслуживания и приведенная интенсивность потока автомобилей с определены в предыдущем примере:

м=0,952; с=0,893.

Вычислим предельные вероятности системы по формулам

P0=1-r=1-0,893=0,107;

P1=(1-r)·r=(1-0,893)·0,893=0,096;

P2=(1-r)·r2=(1-0,893)·0,8932=0,085;

P3=(1-r)·r3=(1-0,893)·0,8933=0,076;

P4=(1-r)·r4=(1-0,893)·0,8934=0,068;

P5=(1-r)·r5=(1-0,893)·0,8935=0,061 и т.д.

Следует отметить, что Р0 определяет долю времени, в течение которого пост диагностики вынужденно бездействует (простаивает). В нашем примере она составляет 10, 7%, так как Р0=0,107.

Среднее число автомобилей, находящихся в системе (на обслуживании и в очереди):

Средняя продолжительность пребывания клиента в системе:

Среднее число автомобилей в очереди на обслуживание:

Средняя продолжительность пребывания автомобиля в очереди:

Относительная пропускаемая способность системы равна единицы, так как все поступившие заявки рано или поздно будут обслужены:

Абсолютная пропускная способность:

A=л q=0,85 1=0,85.

Следует отметить, что предприятие, осуществляющее диагностику автомобилей, прежде всего интересует количество клиентов, которое посетит пост диагностики при снятие ограничения на длину очереди.

Допустим, в первоначальном варианте количество мест для стоянки прибывших автомобилей как в предыдущем примере было равно трем. Частота m возникновения ситуаций, когда прибывающий на пост диагностике автомобиль не имеет возможности присоединить к очереди:

В нашем примере при N=3+1=4 и r=0,893,

m=л P0 r4=0,85 0,248 0,8934=0,134 автомобиля в час.

При 12-часовом режиме работы поста диагностики это эквивалентно тому, что пост диагностики в среднем за смену (день) будет терять 12 0,134=1,6 автомобиля.

Снятие ограничения на длину очереди позволяет увеличить количество обслуживающих клиентов в нашем примере в среднем на 1,6 автомобиля за смену (12 ч. работы) пост диагностики. Ясно, что решение относительно расширения площади для стоянки автомобиля, прибывающих на пост диагностики, должно основываться на оценке экономического ущерба, который обусловлен потерей клиентов при наличие всего трех мест для стоянки этих автомобилей.

4. Многоканальная СМО с отказами

Примером является задание № 4

5. Многоканальная СМО с ожиданием

Механическая мастерская завода с тремя постами (каналами) выполняет ремонт малой механизации. Поток неисправных механизмов, прибывающих в мастерскую, - пуассоновский и имеет интенсивность л=2,5 механизма в сутки, среднее время ремонта одного механизма распределено по показательному закону и равно tоб=0,5 сут. Предположим, что другой мастерской на заводе нет, и, значит, очередь механизмов перед мастерской может расти практически неограниченно.

Требуется вычислить следующие предельные значения вероятностных характеристик системы:

  • - вероятность состояний системы;
  • - среднее число заявок в очереди на обслуживание;
  • - среднее число находящихся в системе заявок;
  • - среднюю продолжительность пребывания заявки в очереди;
  • - среднюю продолжительность пребывания заявки в системе.

Определим параметр потока обслуживаний

Приведенная интенсивность потока заявок

с=л/м=2,5/2,0=1,25,

при этом л/м с=2,5/2 3=0,41<1.

Поскольку л/м с<1, то очередь не растет безгранично и в системе наступает предельный стационарный режим работы.

Вычислим вероятности состояний системы:


Вероятность отсутствия очереди у мастерской

Ротк?Р0+Р1+Р2+Р3?0,279+0,394+0,218+0,091=0,937.

Среднее число заявок в очереди на обслуживание

Среднее число находящихся в системе заявок

Ls=Lq+=0,111+1,25=1,361.

Средняя продолжительность пребывания механизма в очереди на обслуживание

Средняя продолжительность пребывания механизма в мастерской (в системе)

Потоки событий (требований)

Под потоком событий понимается последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени (поток вызовов на телефонной станции, поток покупателей, поток заявок (требований) на ремонт оборудования и т.п.).

Поток характеризуется интенсивностью - л - частотой появления событий или средним числом событий, поступивших в СМО за единицу времени.

Поток событий называется регулярным, если события следуют одно за другим через определенные равные промежутки времени.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени.

Поток событий называется потоком без последствий, если для любых двух непересекающихся участков времени τ4 и τ2 - число событий, попадающих на один из них, не зависит от числа событий, попадающих на другие (например, поток пассажиров, входящих в метро, практически не имеет последствий).

Поток событий называется ординарным, если вероятность попадания на малый (элементарный) участок времени ∆t двух или более событий является величиной бесконечно малой по сравнению с вероятностью попадания одного события, т. е. поток требований (событий). Ординарен, если они (события) появляются в нем поодиночке, а не группами.

Поток событий называется простейшим (или стационарным пуассоновским), если он одновременно стационарен, ординарен и не имеет последствий. Название "простейший" объясняется тем, что СМО с простейшими потоками имеет наиболее простое математическое описание.

Математически доказано, что для простейшего потока число т событий (требований), попадающих на произвольный участок времени t распределено по закону Пуассона

для которого математическое ожидание случайной величины равно ее дисперсии:

В частности, вероятность того, что за время т не произойдет ни одного события (m = 0), равна

В соответствии с этой формулой вероятность того, что на участке времени длиной t не появится ни одного из последующих событий, равна

а вероятность противоположного события, т. е. функция распределения случайной величины Т есть

Методы исследования СМО

Процессы массового обслуживания исследуются на основе двух методов:

  • 1. Аналитического.
  • 2. Метода статистического моделирования или метода Монте-Карло.

Каждый из этих методов имеет свои особенности и сферу практического применения.

Аналитическая теория массового обслуживания предлагает достаточно простые расчетные формулы для определения важнейших характеристик функционирования СМО различных классов. Эти подходы изложены в .

Однако на практике реальные СМО часто отличаются от упрощенных систем. Обслуживающие аппараты и источники, посылающие требования, заявки могут быть неоднородными. Обслуживание может носить сложный многофазовый характер. Поток событий часто может оказаться не простейшим, а время обслуживания в реальных системах может носить любой характер распределения. Многие самые сложные задачи (особенно возникающие в производственных системах) могут быть успешно решены при помощи метода статистического моделирования случайных процессов (метод Монте-Карло).

Построение математической модели Монте-Карло состоит из следующих этапов:

  • 1. Формирование целей задачи и выбор ограничительных условий функционирования системы обслуживания.
  • 2. Проведение наблюдений за ходом производства, т.е. получение исходных данных.
  • 3. Первичная обработка данных, построение рядов распределения и их графический анализ. Выдвижение гипотезы о характере закона распределения.
  • 4. Построение теоретического распределения с параметрами данных эмпирического наблюдения.
  • 5. Проверка соответствия теоретического и эмпирического распределения.

Для наблюдения заходом производственного процесса используются данные фотографий, хронометража, журналов регистрации простоев оборудования, данные с АИС (автоматизированных информационных систем) и др. методы получения информации. При проведении наблюдений не следует проводить округления до равных значений времени.

При обработке первичной документации важно правильно выбрать интервалы группировок. Если ожидается, что распределение похоже на нормальное, величина интервала рассчитывается по формуле:

Рассмотрим, как происходит поиск этой кривой. Вначале собираются исходные данные, строится гистограмма и определяют закон распределения. Далее строится теоретическая кривая, параметры которой совпадают с параметрами эмпирического распределения. Для этого необходимо найти параметры эмпирического распределения и по ним построить теоретическую кривую. Выдвинуть форму гипотезы, найти параметры и построить кривую и далее проверить, насколько соответствует теоретическая кривая и эмпирическое распределение. Если они полностью совпадают, то, значит, закон найден. Но если между теоретической кривой и эмпирической гистограммой имеются различия, необходимо проверить на сколько существенны эти различия. Если они носят случайный характер, тогда можно считать, что эмпирическое распределение описывается данной теоретической кривой. Если же различия очень велики, значит, теоретический закон подобран в данном случае неверно, и нужно искать новый закон распределения. Для оценки существенности различий теоретической кривой и эмпирического распределения используется два критерия X2 (х-квадрат) Пирсона и λ лямбда Колмогорова. X2 определяется по следующей формуле:

Теоретические частоты находятся на основе, например, интегральной формы распределения путем умножения на объем совокупности.

В результате получаем теоретически накопленные частоты.

Оценка на основе критерия х2 производится следующим образом. После того, как найдено х определяют число степеней свободы К, которое равно числу интервалов минус число статистических характеристик, использованных при расчете распределения (параметров). При нормальном законе - три (x,σ,N) параметра, а при распределении Пуассона - два (λ и N) параметра. Для полученных величин X2 и числа степеней свободы К по таблицам отыскивается вероятность Рх2 того, что различие между теоретическим и эмпирическим распределениями носит случайный характер. Если Рх2 больше 0,05 или 5%, можно считать, что эта вероятность достаточно велика, чтобы не исключать случайного характера различий и поэтому распределение считают подчиняющимся данному теоретическому закону. Если же Рх2 меньше 5 %, то считается, что теоретическое и эмпирическое распределение не совпадают и тогда нужно искать новое теоретическое распределение. Значения Рх2 содержатся в специальных таблицах с двумя входами: один соответствует х2, второй - К. На их пересечении Рх2. Проверка по критерию λ. производится так: вначале определяют

После того, как найдена А, по таблицам находят Р (λ). И, если оно больше 0,05, считают, что различия распределения носят случайный характер, если меньше, то не случайный. Критерий λ по сравнению х2 являются менее жестким, т. е. обычно он показывает большую вероятность того, что различие между распределениями носит случайный характер. Это объясняется тем, что для использования критерия λ нужно дополнительное условие, а именно, теоретический анализ должен показать, что эмпирическое распределение должно подчиняться данному закону.

Рис.6.3.

После того как построена математическая модель производственного процесса, можно переходить к проведению случайных испытаний и моделированию на их основе хода производственного процесса. Случайные испытания производятся обычно на основе равновероятного распределения. Далее необходимо от равновероятного распределения перейти к распределению, которое описывается математической моделью. Наконец, построение графика Эпроизводственного процесса на основе случайных испытаний. Для проведения случайных испытаний используются различные методы. Теоретически наиболее простой, но практически наиболее трудоемкий метод жеребьевки: случайный отбор по схеме повторного отбора (шары из урны), моделирование случайных испытаний с помощью ЭВМ, использование таблиц случайных чисел, составленных на основе одного из первых двух способов. Пользоваться таблицей можно в любом, но заранее оговоренным порядке (или по диагонали, сверху вниз и т.д.).

Преобразование равновероятных случайных чисел в числа, подчиняющиеся установленному ранее закону распределения

Имеется несколько переходов от нормально распределенных чисел к случайным числам.

Первый способ связан с закреплением за каждым значением определенного количества номеров, оно пропорционально вероятности каждого времени (например, телефонный разговор).

Этот способ хорош для дискретных значений. Если же значения непрерывные, то используем функцию нормального распределения.

Поскольку вероятность любого значения от 0 до 1, т. е. 0 ≤ F(t) < 1, может быть рассчитано с любой точностью до 2, 3 и т.д. знаков. Найдя по таблице случайных чисел значения случайных чисел, можно приравнять их к величинам F(t)t и известным значениям x и σ значения χ. Эти значения χ и представляют собой случайные величины промежутков между обслуживанием или длительность обслуживания, подчиняющимся закону нормального распределения С параметрами σ и χ. Такой метод очень трудоемкий, и поэтому на практике употребляется графический метод как наиболее удобный.

Установив на основе случайных испытаний возможные длительности времени обслуживания, либо длительности промежутков между поступлением заявок, строят график движения процесса производства во времени. На таком графике проставляют время работы оборудования и время обслуживания, простои и ожидания обслуживания. Суммирование времени простоев дает возможность оценить затем каждый вариант с точки зрения уровня обслуживания основного производственного процесса. Эта оценка представляет третью стадию решения задачи, а именно: оценку и анализ результатов моделирования. В ходе такой оценки строится график экономичности различных вариантов обслуживания. При оценке учитывают, что:

  • 1. Потери и затраты состоят из затрат на обслуживание (зарплата наладчиков) и потерь, связанных с простоями.
  • 2. Экономически наибольшую сложность представляет определение потерь от простоев.
  • 3. Важно установить, сколько нужно произвести испытаний, чтобы определить норму обслуживания. Жесткой цифры нет.

Для определения того, достаточно ли проведено испытаний, используется следующий прием. Общее количество испытаний делится на две части. Для каждой половины подсчитывается средняя арифметическая и дисперсия. Далее они сравниваются друг с другом. Оценка расхождения между средними производится по критерию Стьюдента

Затем сравниваем tрасч с табличным значением. Если tрасч больше табличного, значит, расхождения между средними велики. Это говорит о том, что испытаний в таком случае недостаточно. Испытания продолжают и затем делают снова проверку.

Величина t находится по таблицам Стьюдента в зависимости от вероятности возможной ошибки. Обычно в пределах 5 % и от числа степеней свободы.

Задачи, решаемые методами теории массового обслуживания

Расчет численности вспомогательных рабочих (расчет норм обслуживания): наладчиков, электриков, дежурных слесарей. Расчет необходимого числа кранов. Определение страховых заделов. Определение страховых запасов. Расчет необходимой площади материальных складов.

Теория массового обслуживания представляет собой область прикладной математики, использующую методы теории случайных процессов и теории вероятностей для исследования различной природы сложных систем. Теория массового обслуживания непосредственно не связана с оптимизацией. Назначение ее состоит в том, чтобы на основе результатов наблюдений за «входом» в систему предсказать ее возможности и организовать наилучшее обслуживание для конкретной ситуации и понять, как последнее отразится на стоимости системы в целом. Для систем, относящихся к системам массового обслуживания, существует определенный класс задач, решение которых позволяет ответить на актуальные для сегодняшнего времени вопросы. С какой интенсивностью должно проходить обслуживание или должен выполняться процесс при заданной интенсивности и других параметрах входящего потока требований, чтобы минимизировать очередь или задержку в подготовке документа или другого вида информации? Каковы вероятность появления задержки или очереди и ее величина? Сколько времени требование находится в очереди и каким образом минимизировать его задержку? Какова вероятность потери требования (клиента)? Какова должна быть оптимальная загрузка обслуживающих каналов? При каких параметрах системы достигаются минимальные потери прибыли? К этому перечню можно добавить еще целый ряд задач.
Система массового обслуживания (СМО) включает следующие структурообразующие объекты: источник требований; входной поток требований (поступление заявок); очередь; обслуживающую систему как совокупность каналов обслуживания заявок; выходной поток (об-служенные заявки или удовлетворенные требования). Рассмотрим их модели.
Источник требований. По месту нахождения источника, формиру-ющего требования, СМО делятся на разомкнутые, когда источник на-ходится вне системы, и замкнутые, когда источник находится внутри системы.?
Входной поток требований. Подавляющее большинство теоретиче-ских разработок по исследованию систем массового обслуживания вы-полнено для условия, когда входной поток требований является пуассоновским (простейшим). Этот поток обладает рядом важных свойств. Он стационарен, ординарен и не имеет последствий.
Следующее важное для исследования свойство, которым обладает пуассоновский поток, заключается в том, что процедура разделения и объединения дает снова пуассоновские потоки.
В случае разделения пуассоновского потока на N независимых по-токов получим, что интенсивность потока Х(будет равна гХ, где г.-доля /-го потока во входном потоке требований.
Очередь. Очереди, определяемые как множество требований, ожи-дающих обслуживания, представляются несколькими моделями: оче-редь с отказами, с ограниченным временем ожидания (заявка ждет определенное время), ограниченной длиной и, наконец, неограничен-ным временем ожидания. Порядок поступления заявок на обслужива-ние называется дисциплиной очереди. Требования могут принимать
ся по мере поступления, случайным порядком, с приоритетом, по принципу «последняя - первой», по определенным каналам.
Процесс обслуживания. Основным параметром процесса обслужи-вания считается время обслуживания требования каналом у - f. (/ = 1, 2,..., т). Величина тв каждом конкретном случае определяется рядом факторов: интенсивностью поступления заявок, квалификацией ис-полнителя, технологией работ, окружающей средой и т.д. Законы рас-пределения случайной величины Ту могут быть самыми различными, но наибольшее распространение в практических приложениях получил экспоненциальный закон распределения.
Важнейшее свойство экспоненциального распределения заключа-ется в следующем.
Выходной поток обслуженных требований. Выходной поток - это поток результатов деятельности, представленных выполненными тре-бованиями в виде той или иной продукции или услуги. К основным параметрам выходного потока относятся интенсивность выхода из си-стемы обслуженных требований и характер распределения времени между моментами выпуска продукции. В общем случае эти параметры определяются моделью входного потока, дисциплиной очереди и мо-делью обслуживания. Для СМО с параллельными каналами и одно-фазным обслуживанием существует теорема о том, что при пуассоновском входном потоке с параметром X и одинаковым для каждого канала распределением времени обслуживания с параметром ц в стационарном состоянии выходной поток имеет пуассоновское распределение с параметром g. В многофазных системах выходной поток одного канала служит входным потоком для другого канала.
Особенность моделей СМО связана с достаточно строгим математи-ческим описанием функционирования систем, что достигается благода-ря их унификации по ряду признаков. Так, в зависимости от модели ожидания требованием начала обслуживания различают следующие СМО:
системы с потерями или отказами;
системы с ожиданием;
системы с ограниченным временем ожидания (ВО);
системы с ограниченной длиной очереди (ДО).
По числу каналов обслуживания системы делятся на одноканальные (т = 1) и многоканальные (т > 1). Одной из форм классификации СМО служит кодовая классификация Д. Кендалла. В соответствии с этой классификацией характеристику СМО записывают в виде трех, четырех или пяти символов. Например, а/Ь/с, где а - тип распределения входного потока требований, Ъ - тип распределения времени обслуживания, с - число каналов обслуживания. Для пуассоновского и экспоненциального распределений принимают символ М, для любого произвольного распределения - символ в. Например, запись М/М/2 означает, что входной поток требований пуассоновский, время обслуживания распределено по экспоненциальному закону, в системе имеются два канала. Четвертый символ () указывает допустимую длину очереди, пятый (е) - порядок отбора требований.
Модели СМО могут быть детерминированными или вероятност-ными. В первом случае параметры и переменные модели - это посто-янные величины, во втором - случайные.
Исследование СМО заключается в нахождении показателей, харак-теризующих качество и условия работы обслуживающей системы и показателей, отражающих экономические последствия принятых ре-шений согласно первым показателям. К показателям первой группы относятся следующие.
Рассмотрим приемы вычисления показателей первой группы на
примере наиболее распространенной модели СМО (М/М/т > 2) с ожиданием, содержащей т параллельных обслуживающих каналов. Здесь поступающие требования не теряются и оставляют систему лишь после обслуживания. Каналы выполняют однородные операции, и время обслуживания каждым каналом * распределено по экспоненциальному закону с параметром т (10.5), а входящий поток - пуассоновский с параметром X (10.1); дисциплина очереди не регламентирована, и отсутствует ограничение на число поступающих требований. Модель СМО представляется в виде системы уравнений для стационарного состояния.
Пример. Требуется провести оценку эффективности централизации нескольких отделов или служб с однородными функциями. В качестве объекта рассматриваются две службы такси, которые приобрела компания «Автосервис». Заявки клиентов между службами распределяются поровну. Спрос на такси к диспетчеру поступает с частотой 10 вызовов в час. Среднее время обслуживания одного клиента составляет 11,5 мин. Вызовы такси распределены во времени по пуассоновскому закону, а продолжительность обслуживания одного клиента - по экспоненциальному закону. Каждая служба такси оснащена двумя автомобилями.
Возникает вопрос об экономической целесообразности централи-зации управления таксопарком. Для этого необходимо сравнить два варианта:
1) вариант с независимым обслуживанием системами типа (М/М/2) при51= 10 вызовов/ч,т = 11,5мин. ит = 2;
2) вариант с одной очередью типа (М/М/4) при X = 10 2 = 20 вызовов /ч, т - 11,5 мин. и /и = 4.
Приведенные оценки показывают, что централизация служб позволяет сократить среднее время ожидания клиентом вызванного по телефону такси примерно вдвое. Это не гарантия, что клиент откажется от заказа, но существенное сокращение времени ожидания. В дальнейшем, кроме создания единой службы такси, необходимо рассматривать вопросы увеличения парка такси. При решении задач с размерностью т > 5 методами теории массового обслуживания потребуется автоматизированное вычисление.
Подводя итоги, отметим, что теория массового обслуживания предоставляет исследователю множество разнообразных моделей и методов решения задач по повышению эффективности обслуживания по-
требителей, клиентов. Для ее изучения следует обратиться к фундаментальным трудам отечественных (А.Я. Хинчин, Б.В. Гнеденко, Н.П. Бусленко, И.Н. Коваленко) и зарубежных (А. Эрланг, Т.А. Саати, Г. Вагнер, X. Taxa) ученых, а также и к другим современным публикациям, например.