Пример 1

Вы заходите в супермаркет и видите акцию на . Его обычная цена - 458 рублей, сейчас действует скидка 7%. Но у вас есть карта магазина, и по ней пачка обойдётся в 417 рублей.

Чтобы понять, какой вариант выгоднее, надо перевести 7% в рубли.

Разделите 458 на 100. Для этого нужно просто сместить запятую, отделяющую целую часть числа от дробной, на две позиции влево. 1% равен 4,58 рубля.

Умножьте 4,58 на 7, и вы получите 32,06 рубля.

Теперь остаётся отнять от обычной цены 32,06 рубля. По акции кофе обойдётся в 425,94 рубля. Значит, выгоднее купить его по карте.

Пример 2

Вы видите, что игра в Steam стоит 1 000 рублей, хотя раньше продавалась за 1 500 рублей. Вам интересно, сколько процентов составила скидка.

Разделите 1 500 на 100. Сместив запятую на две позиции влево, вы получите 15. Это 1% от старой цены.

Теперь новую цену разделите на размер 1%. 1 000 / 15 = 66,6666%.

100% – 66,6666% = 33,3333%.Такую скидку предоставил магазин.

2. Как посчитать проценты, разделив число на 10

Сначала вы находите размер 10%, а потом делите или умножаете его, чтобы получить нужное количество процентов.

Пример

Допустим, вы кладёте на 530 тысяч рублей на 12 месяцев. Процентная ставка составляет 5%, капитализации не предусмотрено. Вы хотите узнать, сколько денег заберёте через год.

В первую очередь надо вычислить 10% от суммы. Разделите её на 10, передвинув запятую влево на один знак. Вы получите 53 тысячи.

Чтобы узнать, сколько составляют 5%, разделите результат на 2. Это 26,5 тысячи.

Если бы в примере речь шла о 30%, нужно было бы умножить 53 на 3. Для расчёта 25% пришлось бы умножить 53 на 2 и прибавить 26,5.

В любом случае такими крупными числами оперировать довольно просто.

3. Как посчитать проценты, составив пропорцию

Составлять пропорции - одно из наиболее полезных умений, которому вас научили в . С его помощью можно посчитать любые проценты. Выглядит пропорция так:

сумма, составляющая 100% : 100% = часть суммы: доля в процентном соотношении.

Или можно записать её так: a: b = c: d.

Обычно пропорция читается как «а относится к b так же, как с относится к d». Произведение крайних членов пропорции равно произведению её средних членов. Чтобы узнать неизвестное число из этого равенства, нужно решить простейшее уравнение.

Пример 1

Для примера вычислений используем рецепт . Вы хотите его приготовить и купили подходящую плитку шоколада массой 90 г, но не удержались и откусили кусочек-другой. Теперь у вас только 70 г шоколада, и вам нужно узнать, сколько масла положить вместо 200 г.

Сначала вычисляем процентную долю оставшегося шоколада.

90 г: 100% = 70 г: Х, где Х - масса оставшегося шоколада.

Х = 70 × 100 / 90 = 77,7%.

Теперь составляем пропорцию, чтобы выяснить, сколько масла нам нужно:

200 г: 100% = Х: 77,7%, где Х - нужное количество масла.

Х = 77,7 × 200 / 100 = 155,4.

Следовательно, в тесто нужно положить примерно 155 г масла.

Пример 2

Пропорция подойдёт и для расчёта выгодности скидок. Например, вы видите блузку за 1 499 рублей со скидкой 13%.

Сначала узнайте, сколько стоит блузка в процентах. Для этого отнимите 13 от 100 и получите 87%.

Составьте пропорцию: 1 499: 100 = Х: 87.

Х = 87 × 1 499 / 100.

Заплатите 1 304,13 рубля и носите блузку с удовольствием.

4. Как посчитать проценты с помощью соотношений

В некоторых случаях можно воспользоваться простыми дробями. Например, 10% - это 1/10 числа. И чтобы узнать, сколько это будет в цифрах, достаточно разделить целое на 10.

  • 20% - 1/5, то есть нужно делить число на 5;
  • 25% - 1/4;
  • 50% - 1/2;
  • 12,5% - 1/8;
  • 75% - это 3/4. Значит, придётся разделить число на 4 и умножить на 3.

Пример

Вы нашли брюки за 2 300 рублей со скидкой 25%, но у вас в кошельке только 2 000 рублей. Чтобы узнать, хватит ли денег на обновку, проведите серию несложных вычислений:

100% - 25% = 75% - стоимость брюк в процентах от первоначальной цены после применения скидки.

2 400 / 4 × 3 = 1 800. Именно столько рублей стоят брюки.

5. Как посчитать проценты с помощью калькулятора

Если без калькулятора вам жизнь не мила, все вычисления можно делать с его помощью. А можно поступить ещё проще.

  • Чтобы посчитать проценты от суммы, введите число, равное 100%, знак умножения, затем нужный процент и знак %. Для примера с кофе вычисления будут выглядеть так: 458 × 7%.
  • Чтобы узнать сумму за вычетом процентов, введите число, равное 100%, минус, размер процентной доли и знак %: 458 – 7%.
  • Аналогично можно складывать, как в примере с депозитом: 530 000 + 5%.

6. Как посчитать проценты с помощью онлайн-сервисов

На сайте собраны разные калькуляторы, которые высчитывают не только проценты. Здесь есть сервисы для кредиторов, инвесторов, предпринимателей и всех тех, кто не любит считать в уме.

Пропорция - это математическое выражение, в котором два или более числа сравниваются друг с другом. В пропорциях могут сравниваться абсолютные величины и количества или части более крупного целого. Пропорции можно записывать и вычислять несколькими различными способами, однако в основе лежит один и тот же общий принцип.

Шаги

Часть 1

Что такое пропорция

    Узнайте, для чего служат пропорции. Пропорции используются как в научных исследованиях, так и в повседневной жизни для сравнения различных величин и количеств. В простейшем случае сравниваются два числа, но пропорция может включать в себя любое количество величин. При сравнении двух или большего количества величин всегда можно применить пропорцию. Знание того, как величины соотносятся друг с другом, позволяет, к примеру, записать химические формулы или рецепты различных блюд. Пропорции пригодятся вам для самых разных целей.

  1. Ознакомьтесь с тем, что означает пропорция. Как отмечено выше, пропорции позволяют определить соотношение между двумя и более величинами. Например, если для приготовления печенья необходимо 2 стакана муки и 1 стакан сахара, мы говорим, что между количеством муки и сахара существует пропорция (отношение) 2 к 1.

    • С помощью пропорций можно показать, как различные величины относятся друг к другу, даже если они не связаны между собой непосредственно (в отличие от рецепта). Например, если в классе пять девочек и десять мальчиков, отношение количества девочек к числу мальчиков составляет 5 к 10. В этом случае одно число не зависит от другого и не связано с ним непосредственно: пропорция может измениться, если кто-то покинет класс или наоборот, в него придут новые ученики. Пропорция просто позволяет сравнить две величины.
  2. Обратите внимание на различные способы выражения пропорций. Пропорции можно записать словами или использовать математические символы.

    • В обыденной жизни пропорции чаще выражают словами (как приведено выше). Пропорции используются в самым разных областях, и если ваша профессия не связана с математикой или другой наукой, чаще всего вам будет попадаться именно такой способ записи пропорций.
    • Пропорции часто записывают посредством двоеточия. При сравнении двух чисел с помощью пропорции их можно записать через двоеточие, например 7:13. Если сравнивается более двух чисел, двоеточие ставится последовательно между каждыми двумя числами, например 10:2:23. В приведенном выше примере для класса мы сравниваем количество девочек и мальчиков, причем 5 девочек: 10 мальчиков. Таким образом, в этом случае пропорцию можно записать в виде 5:10.
    • Иногда при записи пропорций используют знак дроби. В нашем примере с классом отношение 5 девочек к 10 мальчикам запишется как 5/10. В этом случае не следует читать знак “делить” и необходимо помнить, что это не дробь, а соотношение двух разных чисел.

    Часть 2

    Операции с пропорциями
    1. Приведите пропорцию к простейшей форме. Пропорции можно упрощать, как и дроби, за счет сокращения входящих в них членов на общий делитель . Чтобы упростить пропорцию, поделите все входящие в нее числа на общие делители. Однако при этом не следует забывать о первоначальных величинах, которые привели к данной пропорции.

      • В приведенном выше примере с классом из 5 девочек и 10 мальчиков (5:10) обе стороны пропорции имеют общий делитель 5. Поделив обе величины на 5 (наибольший общий делитель), получаем отношение 1 девочка на 2 мальчика (то есть 1:2). Однако при использовании упрощенной пропорции следует помнить о первоначальных числах: в классе не 3 ученика, а 15. Сокращенная пропорция лишь показывает отношение между количеством девочек и мальчиков. На каждую девочку приходится два мальчика, но это отнюдь не означает, что в классе 1 девочка и 2 мальчика.
      • Некоторые пропорции не поддаются упрощениям. Например, отношение 3:56 нельзя сократить, так как входящие в пропорцию величины не имеют общего делителя: 3 является простым числом, а 56 не делится на 3.
    2. Для “масштабирования” пропорции можно умножать или делить. Пропорциями часто пользуются для того, чтобы увеличить или уменьшить числа в пропорции друг к другу. Умножение или деление всех входящих в пропорцию величин на одно и то же число сохраняет неизменным отношение между ними. Таким образом, пропорции можно умножать или делить на “масштабный” фактор.

      • Предположим, пекарю необходимо утроить количество выпекаемого печенья. Если мука и сахар берутся в пропорции 2 к 1 (2:1), для увеличения количества печенья в три раза данную пропорцию следует умножить на 3. В результате получится 6 стаканов муки на 3 стакана сахара (6:3).
      • Можно поступать и наоборот. Если пекарю необходимо уменьшить количество печенья в два раза, следует обе части пропорции поделить на 2 (или умножить на 1/2). В результате получится 1 стакан муки на полстакана (1/2, или 0,5 стакана) сахара.
    3. Научитесь по двум эквивалентным пропорциям находить неизвестную величину. Еще одной распространенной задачей, для решения которой широко используются пропорции, является нахождение неизвестной величины в одной из пропорций, если дана аналогичная ей вторая пропорция. Правило умножения дробей значительно упрощает эту задачу. Запишите каждую пропорцию в виде дроби, затем приравняйте эти дроби друг другу и найдите искомую величину.

      • Предположим, у нас есть небольшая группа учеников из 2 мальчиков и 5 девочек. Если мы хотим сохранить соотношение между мальчиками и девочками, сколько мальчиков должно быть в классе, в который входит 20 девочек? Для начала составим обе пропорции, одна из которых содержит неизвестную величину: 2 мальчика: 5 девочек = x мальчиков: 20 девочек. Если мы запишем пропорции в виде дробей, у нас получится 2/5 и x/20. После умножения обеих частей равенства на знаменатели получаем уравнение 5x=40; делим 40 на 5 и в итоге находим x=8.

    Часть 3

    Выявление ошибок
    1. При операциях с пропорциями избегайте сложения и вычитания. Многие задачи с пропорциями звучат подобно следующей: “Для приготовления блюда требуется 4 картофелины и 5 морковок. Если вы хотите использовать 8 картофелин, сколько морковок вам понадобится?” Многие допускают ошибку и пытаются просто сложить соответствующие величины. Однако для сохранения прежней пропорции следует умножать, а не складывать. Вот ошибочное и правильное решение данной задачи:

      • Неправильный метод: “8 - 4 = 4, то есть в рецепте добавилось 4 картофелины. Значит, необходимо взять прежние 5 морковок и прибавить к ним 4, чтобы... что-то не то! С пропорциями действуют по-другому. Попробуем еще раз“.
      • Правильный метод: “8/4 = 2, то есть количество картофелин выросло в 2 раза. Это значит, что и число морковок следует умножить на 2. 5 x 2 = 10, то есть в новом рецепте необходимо использовать 10 морковок“.
    2. Переведите все значения в одинаковые единицы измерения. Иногда проблема возникает из-за того, что величины имеют разные единицы измерения. Прежде чем записывать пропорцию, переведите все величины в одинаковые единицы измерения. Например:

      • У дракона есть 500 граммов золота и 10 килограммов серебра. Каково соотношение золота к серебру в драконьих запасах?
      • Граммы и килограммы являются различными единицами измерения, поэтому их следует унифицировать. 1 килограмм = 1 000 граммов, то есть 10 килограммов = 10 килограммов x 1 000 граммов/1 килограмм = 10 x 1 000 граммов = 10 000 граммов.
      • Итак, дракон имеет 500 граммов золота и 10 000 граммов серебра.
      • Отношение массы золота к массе серебра составляет 500 граммов золота/10 000 граммов серебра = 5/100 = 1/20.
    3. Записывайте в решении задачи единицы измерения. В задачах с пропорциями намного легче найти ошибку в том случае, если записывать после каждой величины ее единицы измерения. Помните о том, что если в числителе и знаменателе стоят одинаковые единицы измерения, они сокращаются. После всех возможных сокращений в ответе должны получиться правильные единицы измерения.

      • Например: даны 6 коробок, и в каждых трех коробках находится 9 шариков; сколько всего шариков?
      • Неправильный метод: 6 коробок х 3 коробки/9 шариков = ... Хм, ничего не сокращается, и в ответе выходит “коробки x коробки / шарики“. Это не имеет смысла.
      • Правильный метод: 6 коробок х 9 шариков/3 коробки = 6 коробок х 3 шарика/1 коробка = 6 х 3 шарика/1 = 18 шариков.

Задача 1 . Толщина 300 листов бумаги для принтера составляет 3, 3 см. Какую толщину будет иметь пачка из 500 листов такой же бумаги?

Решение. Пусть х см — толщина пачки бумаги из 500 листов. Двумя способами найдем толщину одного листа бумаги:

3,3: 300 или х: 500.

Так как листы бумаги одинаковые, то эти два отношения равны между собой. Получаем пропорцию (напоминание: пропорция — это равенство двух отношений ):

х=(3,3· 500): 300;

х=5,5. Ответ: пачка 500 листов бумаги имеет толщину 5,5 см .

Это классическое рассуждение и оформление решения задачи. Такие задачи часто включают в тестовые задания для выпускников, которые обычно записывают решение в таком виде:

или решают устно, рассуждая так: если 300 листов имеют толщину 3,3 см, то 100 листов имеют толщину в 3 раза меньшую. Делим 3,3 на 3, получаем 1,1 см. Это толщина 100 листовой пачки бумаги. Следовательно, 500 листов будут иметь толщину в 5 раз большую, поэтому, 1,1 см умножаем на 5 и получаем ответ: 5,5 см.

Разумеется, это оправдано, так как время тестирования выпускников и абитуриентов ограничено. Однако, на этом занятии мы будем рассуждать и записывать решение так, как положено это делать в 6 классе.

Задача 2. Сколько воды содержится в 5 кг арбуза, если известно, что арбуз состоит на 98% из воды?

Решение.

Вся масса арбуза (5 кг) составляет 100%. Вода составит х кг или 98%. Двумя способами можно найти, сколько кг приходится на 1% массы.

5: 100 или х: 98. Получаем пропорцию:

5: 100 = х: 98.

х=(5· 98): 100;

х=4,9 Ответ: в 5кг арбуза содержится 4,9 кг воды .

Масса 21 литра нефти составляет 16,8 кг. Какова масса 35 литров нефти?

Решение.

Пусть масса 35 литров нефти составляет х кг. Тогда двумя способами можно найти массу 1 литра нефти:

16,8: 21 или х: 35. Получаем пропорцию:

16,8: 21=х: 35.

Находим средний член пропорции. Для этого перемножаем крайние члены пропорции (16,8 и 35 ) и делим на известный средний член (21 ). Сократим дробь на 7 .

Умножаем числитель и знаменатель дроби на 10 , чтобы в числителе и знаменателе были только натуральные числа. Сокращаем дробь на 5 (5 и 10) и на 3 (168 и 3).

Ответ: 35 литров нефти имеют массу 28 кг.

После того, как было вспахано 82% всего поля, осталось вспахать еще 9 га. Какова площадь всего поля?

Решение.

Пусть площадь всего поля х га, что составляет 100%. Осталось вспахать 9 га, что составляет 100% — 82% = 18% всего поля. Двумя способами выразим 1% площади поля. Это:

х: 100 или 9: 18. Составляем пропорцию:

х: 100 = 9: 18.

Находим неизвестный крайний член пропорции. Для этого перемножаем средние члены пропорции (100 и 9 ) и делим на известный крайний член (18 ). Сокращаем дробь.

Ответ : площадь всего поля 50 га.

Страница 1 из 1 1

§ 125. Понятие о пропорции.

Пропорцией называется равенство двух отношений. Вот примеры равенств, называемых пропорциями:

Примечание. Наименования величин в пропорциях не указаны.

Пропорции принято читать следующим образом: 2 так относится к 1 (единице), как 10 относится к 5 (первая пропорция). Можно читать иначе, например: 2 во столько раз больше 1, во сколько раз 10 больше 5. Третью пропорцию можно прочесть так: - 0,5 во столько раз меньше 2, во сколько раз 0,75 меньше 3.

Числа, входящие в пропорцию, называются членами пропорции . Значит, пропорция состоит из четырёх членов. Первый и последний члены, т. е. члены, стоящие по краям, называются крайними , а члены пропорции, находящиеся в середине, называются средними членами. Значит, в первой пропорции числа 2 и 5 будут крайними членами, а числа 1 и 10 - средними членами пропорции.

§ 126. Основное свойство пропорции.

Рассмотрим пропорцию:

Перемножим отдельно её крайние и средние члены. Произведение крайних 6 4 = 24, произведение средних 3 8 = 24.

Рассмотрим другую пропорцию: 10: 5 = 12: 6. Перемножим и здесь отдельно крайние и средние члены.

Произведение крайних 10 6 = 60, произведение средних 5 12 = 60.

Основное свойство пропорции: произведение крайних членов пропорции равно произведению средних её членов.

В общем виде основное свойство пропорции записывается так: ad = bc .

Проверим его на нескольких пропорциях:

1) 12: 4 = 30: 10.

Пропорция эта верна, так как равны отношения, из которых она составлена. Вместе с тем, взяв произведение крайних членов пропорции (12 10) и произведение средних её членов (4 30), мы увидим, что они равны между собой, т. е.

12 10 = 4 30.

2) 1 / 2: 1 / 48 = 20: 5 / 6

Пропорция верна, в чём легко убедиться, упростив первое и второе отношения. Основное свойство пропорции примет вид:

1 / 2 5 / 6 = 1 / 48 20

Нетрудно убедиться в том, что если мы напишем такое равенство, у которого в левой части стоит произведение двух каких-нибудь чисел, а в правой части произведение двух других чисел, то из этих четырёх чисел можно составить пропорцию.

Пусть у нас имеется равенство, в которое входят четыре числа, попарно перемноженные:

эти четыре числа могут быть членами пропорции, которую нетрудно написать, если принять первое произведение за произведение крайних членов, а второе - за произведение средних. Изданного равенства можно составить, например, такую пропорцию:

Вообще, из равенства ad = bc можно получить следующие пропорции:

Проделайте самостоятельно следующее упражнение. Имея произведение двух пар чисел, напишите пропорцию, соответствующую каждому равенству:

а) 1 6 = 2 3;

б) 2 15 = б 5.

§ 127. Вычисление неизвестных членов пропорции.

Основное свойство пропорции позволяет вычислить любой из членов пропорции, если он неизвестен. Возьмём пропорцию:

х : 4 = 15: 3.

В этой пропорции неизвестен один крайний член. Мы знаем, что во всякой пропорции произведение крайних членов равно произведению средних членов. На этом основании мы можем написать:

x 3 = 4 15.

После умножения 4 на 15 мы можем переписать это равенство так:

х 3 = 60.

Рассмотрим это равенство. В нём первый сомножитель неизвестен, второй сомножитель известен и произведение известно. Мы знаем, что для нахождения неизвестного сомножителя достаточно произведение разделить на другой (известный) сомножитель. Тогда получится:

х = 60: 3, или х = 20.

Проверим найденный результат подстановкой числа 20 вместо х в данную пропорцию:

Пропорция верна.

Подумаем, какие действия нам пришлось выполнить для вычисления неизвестного крайнего члена пропорции. Из четырёх членов пропорции нам был неизвестен только один крайний; два средних и второй крайний были известны. Для нахождения крайнего члена пропорции мы сначала перемножили средние члены (4 и 15), а затем найденное произведение разделили на известный крайний член. Сейчас мы покажем, что действия не изменились бы, если бы искомый крайний член пропорции стоял не на первом месте, а на последнем. Возьмём пропорцию:

70: 10 = 21: х .

Запишем основное свойство пропорции: 70 х = 10 21.

Перемножив числа 10 и 21, перепишем равенство в таком виде:

70 х = 210.

Здесь неизвестен один сомножитель, для его вычисления достаточно произведение (210) разделить на другой сомножитель (70),

х = 210: 70; х = 3.

Таким образом, мы можем сказать, что каждый крайний член пропорции равен произведению средних, делённому на другой крайний.

Перейдём теперь к вычислению неизвестного среднего члена. Возьмём пропорцию:

30: х = 27: 9.

Напишем основное свойство пропорции:

30 9 = х 27.

Вычислим произведение 30 на 9 и переставим части последнего равенства:

х 27 = 270.

Найдём неизвестный сомножитель:

х = 270: 27, или х = 10.

Проверим подстановкой:

30: 10 = 27: 9. Пропорция верна.

Возьмём ещё одну пропорцию:

12: б = х : 8. Напишем основное свойство пропорции:

12 . 8 = 6 х . Перемножая 12 и 8 и переставляя части равенства, получим:

6 х = 96. Находим неизвестный сомножитель:

х = 96: 6, или х = 16.

Таким образом, каждый средний член пропорции равен произведению крайних, делённому на другой средний.

Найдите неизвестные члены следующих пропорций:

1) а : 3= 10:5; 3) 2: 1 / 2 = x : 5;

2) 8: b = 16: 4; 4) 4: 1 / 3 = 24: х .

Два последних правила в общем виде можно записать так:

1) Если пропорция имеет вид:

х: а = b: с , то

2) Если пропорция имеет вид:

а: х = b: с , то

§ 128. Упрощение пропорции и перестановка её членов.

В настоящем параграфе мы выведем правила, позволяющие упрощать пропорцию в том случае, когда в неё входят большие числа или дробные члены. K числу преобразований, не нарушающих пропорцию, относятся следующие:

1. Одновременное увеличение или уменьшение обоих членов любого отношения в одинаковое число раз.

П р и м е р. 40: 10 = 60: 15.

Увеличив в 3 раза оба члена первого отношения, получим:

120:30 = 60: 15.

Пропорция не нарушилась.

Уменьшив в 5 раз оба члена второго отношения, получим:

Получили опять правильную пропорцию.

2. Одновременное увеличение или уменьшение обоих предыдущих или обоих последующих членов в одинаковое число раз.

Пример. 16:8 = 40:20.

Увеличим в 2 раза предыдущие члены обоих отношений:

Получили правильную пропорцию.

Уменьшим в 4 раза последующие члены обоих отношений:

Пропорция не нарушилась.

Два полученных вывода можно кратко высказать так: Пропорция не нарушится, если мы одновременно увеличим или уменьшим в одинаковое число раз любой крайний член пропорции и любой средний.

Например, уменьшив в 4 раза 1-й крайний и 2-й средний члены пропорции 16:8 = 40:20, получим:

3. Одновременное увеличение или уменьшение всех членов пропорции в одинаковое число раз. Пример. 36:12 = 60:20. Увеличим все четыре числа в 2 раза:

Пропорция не нарушилась. Уменьшим все четыре числа в 4 раза:

Пропорция верна.

Перечисленные преобразования дают возможность, во-первых, упрощать пропорции, а во-вторых, освобождать их от дробных членов. Приведём примеры.

1) Пусть имеется пропорция:

200: 25 = 56: x .

В ней членами первого отношения являются сравнительно большие числа, и если бы мы пожелали найти значение х , то нам пришлось бы выполнять вычисления над этими числами; но мы знаем, что пропорция не нарушится, если оба члена отношения разделить на одно и то же число. Разделим каждый из них на 25. Пропорция примет вид:

8:1 = 56: x .

Мы получили, таким образом, более удобную пропорцию, из которой х можно найти в уме:

2) Возьмём пропорцию:

2: 1 / 2 = 20: 5.

В этой пропорции есть дробный член (1 / 2), от которого можно освободиться. Для этого придётся умножить этот член, например, на 2. Но о д и н средний член пропорции мы не имеем права увеличивать; нужно вместе с ним увеличить какой-нибудь из крайних членов; тогда пропорция не нарушится (на основании первых двух пунктов). Увеличим первый из крайних членов

(2 2) : (2 1 / 2) = 20: 5, или 4: 1 = 20:5.

Увеличим второй крайний член:

2: (2 1 / 2) = 20: (2 5), или 2: 1 = 20: 10.

Рассмотрим ещё три примера на освобождение пропорции от дробных членов.

Пример 1. 1 / 4: 3 / 8 = 20:30.

Приведём дроби к общему знаменателю:

2 / 8: 3 / 8 = 20: 30.

Умножив на 8 оба члена первого отношения, получим:

Пример 2. 12: 15 / 14 = 16: 10 / 7 . Приведём дроби к общему знаменателю:

12: 15 / 14 = 16: 20 / 14

Умножим оба последующих члена на 14, получим: 12:15 = 16:20.

Пример 3. 1 / 2: 1 / 48 = 20: 5 / 6 .

Умножим все члены пропорции на 48:

24: 1 = 960: 40.

При решении задач, в которых встречаются какие-нибудь пропорции, часто приходится для разных целей переставлять члены пропорции. Рассмотрим, какие перестановки являются законными, т. е. не нарушающими пропорции. Возьмём пропорцию:

3: 5 = 12: 20. (1)

Переставив в ней крайние члены, получим:

20: 5 = 12:3. (2)

Переставим теперь средние члены:

3:12 = 5: 20. (3)

Переставим одновременно и крайние, и средние члены:

20: 12 = 5: 3. (4)

Все эти пропорции верны. Теперь поставим первое отношение на место второго, а второе - на место первого. Получится пропорция:

12: 20 = 3: 5. (5)

В этой пропорции мы сделаем те же перестановки, какие делали раньше, т. е. переставим сначала крайние члены, затем средние и, наконец, одновременно и крайние, и средние. Получатся ещё три пропорции, которые тоже будут справедливыми:

5: 20 = 3: 12. (6)

12: 3 = 20: 5. (7)

5: 3 = 20: 12. (8)

Итак, из одной данной пропорции путём перестановки можно получить ещё 7 пропорций, что вместе с данной составляет 8 пропорций.

Особенно легко обнаруживается справедливость всех этих пропорций при буквенной записи. Полученные выше 8 пропорций принимают вид:

а: b = с: d; c: d = a: b ;

d: b = с: a; b: d = a: c;

a: c = b: d; c: a = d: b;

d: c = b: a; b: a = d: c.

Легко видеть, что в каждой из этих пропорций основное свойство принимает вид:

ad = bc.

Таким образом, указанные перестановки не нарушают справедливости пропорции и ими можно пользоваться в случае надобности.

Задача 1 . Толщина 300 листов бумаги для принтера составляет 3, 3 см. Какую толщину будет иметь пачка из 500 листов такой же бумаги?

Решение. Пусть х см — толщина пачки бумаги из 500 листов. Двумя способами найдем толщину одного листа бумаги:

3,3: 300 или х: 500.

Так как листы бумаги одинаковые, то эти два отношения равны между собой. Получаем пропорцию (напоминание: пропорция — это равенство двух отношений ):

х=(3,3· 500): 300;

х=5,5. Ответ: пачка 500 листов бумаги имеет толщину 5,5 см .

Это классическое рассуждение и оформление решения задачи. Такие задачи часто включают в тестовые задания для выпускников, которые обычно записывают решение в таком виде:

или решают устно, рассуждая так: если 300 листов имеют толщину 3,3 см, то 100 листов имеют толщину в 3 раза меньшую. Делим 3,3 на 3, получаем 1,1 см. Это толщина 100 листовой пачки бумаги. Следовательно, 500 листов будут иметь толщину в 5 раз большую, поэтому, 1,1 см умножаем на 5 и получаем ответ: 5,5 см.

Разумеется, это оправдано, так как время тестирования выпускников и абитуриентов ограничено. Однако, на этом занятии мы будем рассуждать и записывать решение так, как положено это делать в 6 классе.

Задача 2. Сколько воды содержится в 5 кг арбуза, если известно, что арбуз состоит на 98% из воды?

Решение.

Вся масса арбуза (5 кг) составляет 100%. Вода составит х кг или 98%. Двумя способами можно найти, сколько кг приходится на 1% массы.

5: 100 или х: 98. Получаем пропорцию:

5: 100 = х: 98.

х=(5· 98): 100;

х=4,9 Ответ: в 5кг арбуза содержится 4,9 кг воды .

Масса 21 литра нефти составляет 16,8 кг. Какова масса 35 литров нефти?

Решение.

Пусть масса 35 литров нефти составляет х кг. Тогда двумя способами можно найти массу 1 литра нефти:

16,8: 21 или х: 35. Получаем пропорцию:

16,8: 21=х: 35.

Находим средний член пропорции. Для этого перемножаем крайние члены пропорции (16,8 и 35 ) и делим на известный средний член (21 ). Сократим дробь на 7 .

Умножаем числитель и знаменатель дроби на 10 , чтобы в числителе и знаменателе были только натуральные числа. Сокращаем дробь на 5 (5 и 10) и на 3 (168 и 3).

Ответ: 35 литров нефти имеют массу 28 кг.

После того, как было вспахано 82% всего поля, осталось вспахать еще 9 га. Какова площадь всего поля?

Решение.

Пусть площадь всего поля х га, что составляет 100%. Осталось вспахать 9 га, что составляет 100% — 82% = 18% всего поля. Двумя способами выразим 1% площади поля. Это:

х: 100 или 9: 18. Составляем пропорцию:

х: 100 = 9: 18.

Находим неизвестный крайний член пропорции. Для этого перемножаем средние члены пропорции (100 и 9 ) и делим на известный крайний член (18 ). Сокращаем дробь.

Ответ : площадь всего поля 50 га.

Страница 1 из 1 1