Цели урока:

1) познакомить учащихся с понятием средней линии трапеции, рассмотреть её свойства и доказать их;

2) научить строить среднюю линию трапеции;

3) развивать умение учащихся использовать определение средней линии трапеции и свойства средней линии трапеции при решении задач;

4) продолжать формировать у учащихся умение говорить грамотно, используя необходимые математические термины; доказывать свою точку зрения;

5) развивать логическое мышление, память, внимание.

Ход урока

1. Проверка домашнего задания происходит в течение урока. Домашнее задание было устным, вспомнить:

а) определение трапеции; виды трапеций;

б) определение средней линии треугольника;

в) свойство средней линии треугольника;

г) признак средней линии треугольника.

2. Изучение нового материала.

а) На доске изображена трапеция ABCD.

б) Учитель предлагает вспомнить определение трапеции. На каждой парте имеется схема-подсказка, помогающая вспомнить основные понятия в теме “Трапеция” (см. Приложение 1). Приложение 1 выдаётся на каждую парту.

Ученики изображают трапецию ABCD в тетради.

в) Учитель предлагает вспомнить, в какой теме встречалось понятие средней линии (“Средняя линия треугольника”). Учащиеся вспоминают определение средней линии треугольника и её свойство.

д) Записывают определение средней линии трапеции, изображая её в тетради.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

Свойство средней линии трапеции на данном этапе остаётся не доказанным, поэтому следующий этап урока предполагает работу над доказательством свойства средней линии трапеции.

Теорема. Средняя линия трапеции параллельна её основаниям и равна их полусумме.

Дано: ABCD – трапеция,

MN – средняя линия ABCD

Доказать , что:

1. BC || MN || AD.

2. MN = (AD + BC).

Можно выписать некоторые следствия, вытекающие из условия теоремы:

AM = MB, CN = ND, BC || AD.

На основании только перечисленных свойств доказать требуемое невозможно. Система вопросов и упражнений должна подвести учащихся к желанию связать среднюю линию трапеции со средней линией какого-нибудь треугольника, свойства которой они уже знают. Если предложений не последует, то можно задать вопрос: как построить треугольник, для которого отрезок MN являлся бы средней линией?

Запишем дополнительное построение для одного из случаев.

Проведём прямую BN, пересекающую продолжение стороны AD в точке K.

Появляется дополнительные элементы – треугольники: ABD, BNM, DNK, BCN. Если мы докажем, что BN = NK, то это будет означать, что MN – средняя линия ABD, а дальше можно будет воспользоваться свойством средней линии треугольника и доказать необходимое.

Доказательство:

1. Рассмотрим BNC и DNK, в них:

а) CNB =DNK (свойство вертикальных углов);

б) BCN = NDK (свойство внутренних накрест лежащих углов);

в) CN = ND (по следствию из условия теоремы).

Значит BNC =DNK (по стороне и двум прилежащим к ней углам).

Что и требовалось доказать.

Доказательство можно провести на уроке устно, а дома восстановить и записать в тетради (на усмотрение учителя).

Необходимо сказать и о других возможных способ доказательства этой теоремы:

1. Провести одну из диагоналей трапеции и использовать признак и свойство средней линии треугольника.

2. Провести CF || BA и рассмотреть параллелограмм ABCF и DCF.

3. Провести EF || BA и рассмотреть равенство FND и ENC.

ж) На этом этапе задаётся домашнее задание: п. 84, учебник под ред. Атанасяна Л.С. (доказательство свойства средней линии трапеции векторным способом), записать в тетради.

з) Решаем задачи на использование определения и свойства средней линии трапеции по готовым чертежам (см. Приложение 2). Приложение 2 выдаётся каждому учащемуся, и решение задач оформляется на этом же листе в краткой форме.

Отрезок прямой, соединяющей середины боковых сторон трапеции, называется средней линией трапеции. О том, как найти среднюю линию трапеции и как она соотносится с другими элементами этой фигуры, мы расскажем ниже.

Теорема о средней линии

Нарисуем трапецию, в которой AD - большее основание, BC - меньшее основание, EF - средняя линия. Продолжим основание AD за точку D. Проведём линию BF и продолжим её до пересечения с продолжением основания AD в точке О. Рассмотрим треугольники ∆BCF и ∆DFO. Углы ∟BCF = ∟DFO как вертикальные. CF = DF, ∟BCF = ∟FDО, т.к. ВС // АО. Следовательно, треугольники ∆BCF = ∆DFO. Отсюда стороны BF = FO.

Теперь рассмотрим ∆АВО и ∆EBF. ∟ABO общий для обоих треугольников. BE/AB = ½ по условию, BF/BO = ½, поскольку ∆BCF = ∆DFO. Следовательно, треугольники ABO и EFB подобны. Отсюда отношение сторон EF/AO = ½, как и отношение других сторон.

Находим EF = ½ AO. По чертежу видно, что AO = AD + DO. DO = BC как стороны равных треугольников, значит, AO = AD + BC. Отсюда EF = ½ АО = ½ (AD + BC). Т.е. длина средней линии трапеции равна полусумме оснований.

Всегда ли средняя линия трапеции равна полусумме оснований?

Предположим, что существует такой частный случай, когда EF ≠ ½ (AD + BC). Тогда ВС ≠ DO, следовательно, ∆BCF ≠ ∆DCF. Но это невозможно, поскольку у них равны два угла и стороны между ними. Следовательно, теорема верна при всех условиях.

Задача о средней линии

Предположим, в нашей трапеции АВСD АD // ВС, ∟A=90°, ∟С = 135°, АВ = 2 см, диагональ АС перпендикулярна боковой стороне. Найдите среднюю линию трапеции EF.

Если ∟А = 90°, то и ∟В = 90°, значит, ∆АВС прямоугольный.

∟BCA = ∟BCD - ∟ACD. ∟ACD = 90° по условию, следовательно, ∟BCA = ∟BCD - ∟ACD = 135° - 90° = 45°.

Если в прямоугольном треугольнике ∆АВС один угол равен 45°, значит, катеты в нём равны: АВ = ВС = 2 см.

Гипотенуза АС = √(АВ² + ВС²) = √8 см.

Рассмотрим ∆ACD. ∟ACD = 90° по условию. ∟CAD = ∟BCA = 45° как углы, образованные секущей параллельных оснований трапеции. Следовательно, катеты AC = CD = √8.

Гипотенуза AD = √(AC² + CD²) = √(8 + 8) = √16 = 4 см.

Средняя линия трапеции EF = ½(AD + BC) = ½(2 + 4) = 3 см.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

В этой статье для вас сделана очередная подборка задач с трапецией. Условия так или иначе связаны с её средней линией. Типы заданий взяты из открытого банка типовых задач. Если есть желание, то можете освежить свои теоретические знания . На блоге уже рассмотрены задачи условия которых связаны с , а также . Кратко о средней линии:


Средняя линия трапеции соединяет середины боковых сторон. Она параллельна основаниям и равна их полусумме.

Перед решением задач давайте рассмотрим теоретический пример.

Дана трапеция ABCD. Диагональ АС пересекаясь со средней линией образует точку К, диагональ BD точку L. Доказать, что отрезок KL равен половине разности оснований.


Давайте сначала отметим тот факт, что средняя линия трапеции делит пополам любой отрезок концы которого лежат на её основаниях. Этот вывод напрашивается сам собой. Представьте отрезок соединяющий две точки оснований, он разобьёт данную трапецию на две других. Получится, что отрезок параллельный основаниям трапеции и проходящий через середину боковой стороны на другой боковой стороне пройдёт через её середину.

Так же это основывается на теореме Фалеса:

Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки.

То есть в данном случае К середина АС и L середина BD. Следовательно EK есть средняя линия треугольника АВС, LF есть средняя линия треугольника DCB. По свойству средней линии треугольника:

Можем теперь выразить отрезок KL через основания:

Доказано!

Данный пример приведён не просто так. В задачах для самостоятельного решения имеется именно такая задача. Только в ней не сказано, что отрезок соединяющий середины диагоналей лежит на средней линии. Рассмотрим задачи:

27819. Найдите среднюю линию трапеции, если ее основания равны 30 и 16.


Вычисляем по формуле:

27820. Средняя линия трапеции равна 28, а меньшее основание равно 18. Найдите большее основание трапеции.


Выразим большее основание:

Таким образом:

27836. Перпендикуляр, опущенный из вершины тупого угла на большее основание равнобедренной трапеции, делит его на части, имеющие длины 10 и 4. Найдите среднюю линию этой трапеции.


Для того, чтобы найти среднюю линию необходимо знать основания. Основание АВ найти просто: 10+4=14. Найдём DC.

Построим второй перпендикуляр DF:


Отрезки AF, FE и EB будут равны соответственно 4, 6 и 4. Почему?

В равнобедренной трапеции перпендикуляры опущенные к большему основанию разбивают его на три отрезка. Два из них, являющиеся катетами отсекаемых прямоугольных треугольников, равны друг другу. Третий отрезок равен меньшему основанию, так как при построении указанных высот образуется прямоугольник, а в прямоугольнике противолежащие стороны равны. В данной задаче:

Таким образом DC=6. Вычисляем:

27839. Основания трапеции относятся 2:3, а средняя линия равна 5. Найдите меньшее основание.


Введём коэффициент пропорциональности х. Тогда АВ=3х, DC=2х. Можем записать:

Следовательно меньшее основание равно 2∙2=4.

27840. Периметр равнобедренной трапеции равен 80, ее средняя линия равна боковой стороне. Найдите боковую сторону трапеции.

Исходя из условия можем записать:

Если обозначить среднюю линию через величину х, то получится:

Второе уравнение уже можно записать в виде:

27841. Средняя линия трапеции равна 7, а одно из ее оснований больше другого на 4. Найдите большее основание трапеции.


Обозначим меньшее основание (DC) как х, тогда большее (AB) будет равно х+4. Можем записать

Получили, что меньшее основание рано пяти, значит большее равно 9.

27842. Средняя линия трапеции равна 12. Одна из диагоналей делит ее на два отрезка, разность которых равна 2. Найдите большее основание трапеции.


Большее основание трапеции мы без труда найдём если вычислим отрезок ЕО. Он является средней линией в треугольнике ADB, и АВ=2∙ЕО.

Что имеем? Сказано что средняя линия равна 12 и разность отрезков ЕО и ОF равна 2. Можем записать два уравнения и решить систему:

Понятно, что в данном случае подобрать пару чисел можно без вычислений, это 5 и 7. Но, всё-таки, решим систему:


Значит ЕО=12–5=7. Таким образом, большее основание равно АВ=2∙ЕО=14.

27844. В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 12. Найдите ее среднюю линию.

Сразу отметим, что высота проведённая через точку пересечения диагоналей в равнобедренной трапеции лежит на оси симметрии и разбивает трапецию на две равные прямоугольные трапеции, то есть основания этой высотой делятся пополам.

Казалось бы, для вычисления средней линии мы должны найти основания. Тут небольшой тупик возникает… Как зная высоту, в данном случае, вычислить основания? А ни как! Таких трапеций с фиксированной высотой и диагоналями пересекающимися по углом 90 градусов можно построить множество. Как быть?

Посмотрите на формулу средней линии трапеции. Ведь нам необязательно знать сами основания, достаточно узнать их сумму (или полусумму). Это мы сделать можем.

Так как диагонали пересекаются под прямым углом, то высотой EF образуются равнобедренные прямоугольные треугольники:

Из выше сказанного следует, что FO=DF=FC, а OE=AE=EB. Теперь запишем чему равна высота выраженная через отрезки DF и AE:


Таким образом, средняя линия равна 12.

*Вообще это задачка, как вы поняли, для устного счёта. Но, уверен, представленное подробное объяснение необходимо. А так… Если взглянуть на рисунок (при условии, что при построении соблюдён угол между диагоналями), сразу в глаза бросается равенство FO=DF=FC, а OE=AE=EB.

В составе прототипов имеется ещё типы заданий с трапециями. Построена она на листе в клетку и требуется найти среднюю линию, сторона клетки обычно равна 1, но может быть другая величина.

27848. Найдите среднюю линию трапеции ABCD , если стороны квадратных клеток равны 1.

Всё просто, вычисляем основания по клеткам и используем формулу: (2+4)/2=3

Если же основания построены под углом к клеточной сетке, то есть два способа. Например!

Четырёхугольник, у которого только две стороны параллельны называются трапецией .

Параллельные стороны трапеции называются её основаниями , а те стороны, которые не параллельны, называются боковыми сторонами . Если боковые стороны равны, то такая трапеция является равнобедренной. Расстояние между основаниями называется высотой трапеции.

Средняя Линия Трапеции

Средняя линия - это отрезок, соединяющий середины боковых сторон трапеции. Средняя линия трапеции параллельна её основаниям.

Теорема:

Если прямая, пересекающая середину одной боковой стороны, параллельна основаниям трапеции, то она делит пополам вторую боковую сторону трапеции.

Теорема:

Длина средней линии равна среднему арифметическому длин её оснований

MN || AB || DC
AM = MD; BN = NC

MN средняя линия, AB и CD - основания, AD и BC - боковые стороны

MN = (AB + DC)/2

Теорема:

Длина средней линии трапеции равна среднему арифметическому длин её оснований.

Основная задача : Доказать, что средняя линия трапеции делит пополам отрезок, концы которого лежат в середине оснований трапеции.

Средняя Линия Треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника. Она параллельна третьей стороне и её длина равна половине длины третьей стороны.
Теорема : Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.

AM = MC and BN = NC =>

Применение свойств средней линии треугольника и трапеции

Деление отрезка на определённое количество равных частей.
Задача: Разделить отрезок AB на 5 равных частей.
Решение:
Пусть p это случайный луч, у которого начало это точка А, и который не лежит на прямой AB. Мы последовательно откладываем 5 равных сегментов на p AA 1 = A 1 A 2 = A 2 A 3 = A 3 A 4 = A 4 A 5
Мы соединяем A 5 с B и проводим такие прямые через A 4 , A 3 , A 2 и A 1 , которые параллельны A 5 B. Они пересекают AB соответственно в точках B 4 , B 3 , B 2 и B 1 . Эти точки делят отрезок AB на 5 равных частей. Действительно, из трапеции BB 3 A 3 A 5 мы видим, что BB 4 = B 4 B 3 . Таким же образом, из трапеции B 4 B 2 A 2 A 4 получаем B 4 B 3 = B 3 B 2

В то время как из трапеции B 3 B 1 A 1 A 3 , B 3 B 2 = B 2 B 1 .
Тогда из B 2 AA 2 следует, что B 2 B 1 = B 1 A. В заключении получаем:
AB 1 = B 1 B 2 = B 2 B 3 = B 3 B 4 = B 4 B
Ясно, что для разделения отрезка AB на другое количество равных частей, нам нужно проецировать то же самое количество равных сегментов на луч p. И далее продолжать вышеописанным способом.