ГИДРАВЛИЧЕСКАЯ ХАРАКТЕРИСТИКА СИСТЕМЫ

Водяные системы теплоснабжения представляют собой сложные гидравлические системы, в которых работа отдельных звеньев находится во взаимной зависимости. Для правильного управления и регулирования необходимо знать гидравлические характеристики работающего оборудования - циркуляционных насосов и сети.

Гидравлический режим системы определяется точкой пересечения гидравлических характеристик насоса и сети.

Рис.1. Гидравлическая характеристика насоса и тепловой сети

На рис. 1 кривая 1 - характеристика насоса; кривая 2- характеристика тепловой сети; точка А - пересечение этих характеристик, определяет гидравлический режим системы; Н- напор, развиваемый насосом, равный потере напора в замкнутой системе; V- объемная подача насоса, равная расходу воды в системе.

Гидравлической характеристикой насоса называется зависимость напора Н или перепада давлений Δр, создаваемого насосом, от объемной подачи насоса V. Характеристики насосов обычно определяются заводами-изготовителями или могут быть построены по данным испытания.

При постоянной частоте вращения рабочего колеса рабочий участок характеристики центробежного насоса может быть приближенно описан уравнением



Мощность, Вт, потребляемая насосом при номинальном режиме, определяется по формуле



При номинальном режиме в среднем . Так как потеря напора в тепловых сетях, как правило, подчиняется квадратичному закону, то характеристика тепловой сети представляет собой квадратичную параболу, описываемую уравнением




Как видно из (6.5), сопротивление сети зависит от ее геометрических размеров, абсолютной шероховатости внутренней поверхности трубопроводов, эквивалентной длины местных сопротивлений и плотности теплоносителя, но не зависит от расхода теплоносителя. Для данного состояния сети ее характеристика может быть построена по одному известному режиму. Для определения сопротивления sдостаточно знать для одного какого-нибудь режима расход воды и соответствующее этому расходу падение давления Δр.

Часто на станции работает совместно несколько насосов. Для определения режима их совместной работы необходимо построить суммарную характеристику. Порядок суммирования характеристик насосов зависит от способа их включения. Если насосы включены параллельно, то суммарная характеристика строится посредством сложения расходов (подач) при одних и тех же напорах.


Рис. 2. Построение суммарной характеристики насосов

а - параллельно включенных, б - последовательно включенных

Суммарная характеристика группы mпараллельно включенных насосов, имеющих одинаковые характеристики, описывается приближенным уравнением



Построение суммарной характеристики последовательно включенных насосов проводится путем сложения напоров при одних и тех же расходах.

Суммарная характеристика группы последовательно включенных насосов, имеющих одинаковые характеристики, описывается приближенным уравнением


Степень изменения подачи при параллельном включении насосов зависит от вида характеристики сети. Чем более пологий вид имеет характеристика сети, тем эффективнее параллельное включение насосов. Чем круче характеристика сети, тем меньший эффект дает параллельное включение.

При проектировании насосных установок, состоящих из нескольких параллельно работающих насосов, следует выбирать все насосы с одинаковыми характеристиками, а расчетную подачу каждого из них принимать равной суммарному расходу воды, деленному на число работающих насосов, не считая резервных. Подача насосов при последовательном включении также зависит от вида характеристики сети. Чем круче характеристика сети, тем эффективнее последовательное включение.

ГИДРАВЛИЧЕСКИЙ РЕЖИМ ЗАКРЫТЫХ СИСТЕМ

Одно из важных условий нормальной работы систем теплоснабжения заключается в обеспечении в тепловой сети перед групповыми или местными тепловыми пунктами (ГТП или МТП) располагаемых напоров, достаточных для подачи в абонентские установки расходов воды, соответствующих их тепловой нагрузке.

Задача расчета гидравлического режима сети заключается в определении расходов сетевой воды у абонентов и на отдельных участках сети, а также давлений (напоров) и располагаемых перепадов давлений (напоров) в узловых точках сети, на групповых и местных тепловых пунктах (абонентских вводах) при заданном режиме работы сети.

Заданными обычно являются схема тепловой сети, сопротивления sвсех ее участков, давления (напоры) на подающем и обратном коллекторах ТЭЦ или располагаемый перепад давлений (напоров) на коллекторах ТЭЦ и давление (напор) в нейтральной точке сети. При наличии на абонентских вводах авторегуляторов известны также расходы сетевой воды у абонентов, поскольку эти расходы поддерживаются с помощью авторегуляторов на заданном уровне. В этом случае по известным расходам сетевой воды у абонентов находят расходы воды на всех участках тепловой сети, а затем потери давления (напора) на всех участках сети и строят пьезометрический график, по которому определяют давления (напоры) в узловых точках тепловой сети и на абонентских вводах.

При отсутствии в ГТП или на МТП авторегуляторов расход сетевой воды у абонентов заранее неизвестен и определение их является одной из основных задач расчета гидравлического режима тепловой сети. Для решения этой задачи необходимо знать кроме сопротивлений всех участков тепловой сети также и сопротивления всех МТП и абонентских установок. Рассмотрим метод расчета расхода воды у абонентов тепловой сети при отсутствии авторегуляторов на абонентских вводах.


Рнс. 3. Схема тепловой сети

а - однолинейное изображение; б - двухлинейное изображение

Участки магистрали нумеруются римскими цифрами, а ответвления к абонентам и абоненты - арабскими.

Суммарный расход воды в сети обозначим буквой Vбез индекса. Расход воды через абонентскую систему - буквойVс индексом, равным номеру абонента. Например,V m - расход воды через абонентскую системуm.

Относительный расход воды через абонентскую систему, т.е. отношение расхода через абонентскую систему к суммарному расходу воды в сети, обозначим Vс индексом. Например, относительный расход воды у абонента

Расход воды у абонента 1 может быть найден из уравнения


.


Следовательно


Найдем расход воды через абонентскую установку 2, для которой справедливо следующее уравнение:






Аналогично находят относительный расход воды через абонентскую установку 3:



Если к тепловой сети присоединено nабонентов, то относительный расход воды через систему любого абонентаm


По данной формуле можно найти расход воды через любую абонентскую систему, если известны суммарный расход воды и сопротивления участков сети. Из (6.20) следует, что относительный расход воды через абонентскую систему зависит только от сопротивления сети и абонентских установок и не зависит от абсолютного расхода воды в сети.

Важнейшей задачей при проектировании и эксплуатации систем теплоснабжения является разработка эффективного гидравлического режима, обеспечивающего надежную работу тепловых сетей.

Под надежной работой подразумевается:

1) обеспечение требуемых напоров перед абонентами ();

2) исключение вскипания теплоносителя в подающей магистрали;

3) исключение опорожнения систем отопления в зданиях, а значит последующего завоздушивания при повторном пуске;

4) исключение опасных превышений давления у потребителей, вызывающих возможность порыва труб и отопительной арматуры.

Под гидравлическим режимом тепловой сети понимают взаимную связь между давлениями (напорами) и расходами теплоносителя в различных точках сети в данный момент времени.

Гидравлический режим тепловой сети изучают с помощью построения графика давлений (пьезометрического графика).

График строится после проведения гидравлического расчета трубопроводов. Он позволяет наглядно ориентироваться в гидравлическом режиме работы тепловых сетей при различном режиме их работы, с учетом влияния рельефа местности, высоты зданий, потерь давления в тепловых сетях. По этому графику можно легко определить давление и располагаемый напор в любой точке сети и абонентской системе, подобрать соответствующее насосное оборудование насосных станций и схему автоматического регулирования гидравлического режима работы ИТП.

Рассмотрим пьезометрический график для тепловой сети, располо­женной на местности со спокойным рельефом (рис. 7.1). Плоскость с нулевой отметкой совмещена с отметкой расположения теплоподготовительной установки. Профиль основной магистрали 1 -2-3 -III совме­щен с вертикальной плоскостью, в которой вычерчен пьезометрический график. В точке 2 к магистрали присоединено ответвление 2 -I . Это от­ветвление имеет свой профиль в плоскости, перпендикулярной основной магистрали. Для возможности изображения профиля ответвления 2 -I на пьезометрическом графике повернем его на 90° против часовой стрел­ки вокруг точки 2 и совместим c плоскостью профиля основной маги­страли. После совмещения плоскостей профиль ответвления займет на графике положение, отображаемое линией 2 - . Аналогично строим профиль и для ответвления 3 - .



Рассмотрим работу двухтрубной системы теплоснабжения, принци­пиальная схема которой показана на рис. 7.1,в . Из теплоподготовительной установки Т высокотемпературная вода с поступает в по­дающий теплопровод в точке П1 с полным напором в подающем коллек­торе источника теплоснабжения (здесь - на­чальный полный напор после сетевых насосов (точка K ); - потери напора сетевой воды в теплоподготовительной установке). Так как гео­дезическая отметка установки сетевых насосов , полные напоры в начале сети равны пьезометрическим напорам и соответствуют избыточ­ным давлениям в коллекторах источника теплоснабжения. Горячая вода по подающей магистрали 1-2-3-III и ответвлениям 2-I и 3-II по­ступает в местные системы потребителей тепла I , II , III . Полные напоры в подающей магистрали и ответвлениях изображены графиками напоров П1-ПIII , П2-ПI , П3-ПII . Охлажденная вода по обратным трубопро­водам направляется к источнику теплоснабжения. Графики полных дав­лений в обратных теплопроводах изображены линиями OIII-О1 , OII- О3, ОI-О1.

Разность напоров в подающей и обратной линиях для любой точ­ки сети называется располагаемым напором . Так как подающий и обрат­ный трубопроводы в любой точке имеют одну и ту же геодезическую от­метку, располагаемый напор равен разности полных или пьезометриче­ских напоров:

У абонентов располагаемые напоры равны: ;

; . Полный напор в конце обратной линии перед сетевым насосом на обратном коллекторе источника тепло­снабжения равен . Следовательно, располагаемый

напор в коллек­торах теплоподготовительной установки

Сетевой насос повышает давление воды, поступающей из обратной линии, и направляет ее в теплоподготовительную установку, где она на­гревается до . Насос развивает напор .

Рис. 7.1. Пьезометрический график (а), однолинейная схема трубопроводов (б) и схе­ма двухтрубной тепловой сети (в)

I -III - абоненты; 1, 2, 3 - узлы; П - подающая линия; О - обратная линия; Н - напоры; Т -теплоподготовительная установка; СИ - сетевой насос; РД - регулятор давления; Д - точка от­бора импульса для РД; ПН - подпиточный насос; Б - бак подпиточной воды; ДК - дренажныйклапан.

Потери напора в подающей и обратной линиях равны разности пол­ных напоров в начале и конце трубопровода. Для подающей магистрали они равны , а для обратной .

Описанный гидродинамический режим наблюдается при работе се­тевого насоса. Положение пьезометрической линии обратного трубопро­вода в точке О1 поддерживается постоянным в результате работы подпиточного насоса ПН и регулятора давления РД . Напор, развиваемый подпиточным насосом при гидродинамическом режиме , дросселируется клапаном РД таким образом, чтобы в точке отбора импульса давления Д из байпасной линии сетевого насоса поддерживался напор , рав­ный полному напору, развиваемому подпиточным насосом.

На рис. 7.2 показаны график напоров в линии подпитки и в байпас­ной линии, а также принципиальная схема подпиточного устройства.

Рис. 7.2. График напоров в линии подпитки 1 -2 и в байпасной линии сетевого насоса 2 -3 (а) и схема подпиточного устройства (б):

Н - пьезометрические напоры; - поте­ри напора в дроссельных органах регуля­тора давления РД и в задвижках А и В; СН, ПН - сетевой и подпиточный насосы; ДК - дренажный клапан; Б - бак подпиточной воды

Перед подпиточным насосом полный напор условно принимаем равным нулю. Подпиточный насос ПН развивает напор . Этот напор будет в трубопроводе до регулятора давления РД. Потерями напора на трение на участках 1 -2 и 2 -3 пренебрегаем ввиду их малости. В байпасной линии теплоноситель движется от точки 3 к точке 2. В задвижках А и В срабатывается весь напор, развиваемый сетевым насосом. Степень за­крытия этих задвижек регулируют таким образом, чтобы в задвижке А был сработан напор и полный напор после нее был равен .

В задвижке В срабатывается напор , причем (здесь - напор после РД). Регулятор давления под­держивает постоянное давление в точке Д между задвижками А и В. При этом в точке 2 будет поддерживаться напор , а на клапане РД будет срабатываться напор .

При увеличении утечки теплоносителя из сети давление в точке Д начинает снижаться, клапан РД приоткрывается, увеличивается подпит­ка тепловой сети и давление восстанавливается. При сокращении утечки давление в точке Д начинает повышаться и клапан РД прикрывается. Если при закрытом клапане РД давление будет продолжать расти, на­пример в результате прироста объема воды при повышении ее темпера­туры, в работу включится дренажный клапан ДК, поддерживающий по­стоянное давление «до себя» в точке Д, и сбросит избыток воды в дре­наж. Так работает подпиточное устройство при гидродинамическом ре­жиме. При остановке сетевых насосов прекращается циркуляция тепло­носителя в сети и во всей системе напор падает вплоть до . Регуля­тор давления РД открывается, а подпиточный насос ПН поддерживает во всей системе постоянный напор .

Таким образом, при втором характерном гидравлическом режиме - статическом - во всех точках системы теплоснабжения устанавливается полный напор, развиваемый подпиточным насосом. В точке Д как при гидродинамическом, так и при статическом режимах поддерживается постоянный напор .Такая точка называется нейтральной.

Ввиду большого гидростатического давления, создаваемого столбом воды, и высокой температуры транспортируемой воды возникают жест­кие требования к допустимому диапазону давлений как в подающем, так и в обратном трубопроводах. Эти требования накладывают ограни­чения на возможное расположение пьезометрических линий как при статическом, так и при гидродинамическом режимах.

Для исключения влияния местных систем на режим давления в сети будем считать, что они присоединены по независимой схеме, при которой гидравлические режимы тепловой сети и местных систем автономны. В таких условиях к режиму давлений в сети предъявляются излагаемые ниже требования.

При работе тепловой сети и при разработке графика пьезометрических напоров должны быть соблюдены следующие условия (как при динамическом, так и при статическом режимах), которые перечисляются в порядке очередности их проверки при построении графика.

1. Пьезометрический напор в обратном трубопроводе сети должен быть выше статического уровня подсоединенных систем (высоты зданий Н зд ) не менее чем на 5 м (запас), иначе давление в обратном трубопроводе Н обр будет меньше статического давления здания Н зд и уровень воды в зданиях установится на высоте напора обратного пьезометра, а над ним возникнет вакуум (оголение системы), который вызовет подсос воздуха в систему. На графике это условие выразится тем, что линия обратного пьезометра должна пройти на 5 м выше здания:

Н обр Н зд + 5 м ; Н ст Н зд + 5 м .

2. В любой точке обратной магистрали пьезометрический напор должен быть не менее 5 м , чтобы не было вакуума и подсоса воздуха в сеть (5 м – запас). На графике это условие выражается тем, что пьезометрическая линия обратной магистрали и линия статического напора в любой точке сети должны идти не менее чем на 5м выше уровня земли:

Н обр Н з + 5 м ; Н ст Н з + 5 м.

3. Напор на всасе сетевых насосов (напор подпитки Н о ) должен быть не менее 5 м , чтобы обеспечить залив насосов водой и отсутствие кавитации:

Н о 5 м.

4. Давление воды в системе отопления должно быть меньше максимально допустимого, которое могут выдержать отопительные приборы (6 кгс/см 2 ). На графике это условие выражается тем, что на вводах в здания пьезометрические напоры в обратной магистрали и статический уровень сети не должны быть выше Н доп = 55 м (с запасом 5 м ):

Н обр - Н з 55 м ; Н ст - Н з 55 м .

5. В подающем трубопроводе до элеватора, где температура воды выше , должно поддерживаться давление не менее давления кипения воды при температуре теплоносителя – принимается с запасом; (для статического уровня это не обязательно):

Н s =20 м при и Н s =40 м при .

На графике это условие выразится тем, что линия напоров в подающем трубопроводе должна быть соответственно на величину Н s выше наивысшейточки перегретой воды в системе отопления (для жилых зданий это будет уровень земли, а для промышленных зданий –высшаяточка перегретой воды в цехах):

Н под Н s + 5 м .

6. Статический уровень местных систем (уровень верха зданий) не должен создавать в системах других зданий давление больше максимального допустимого для них, иначе при остановке сетевых насосов произойдет раздавливание приборов этих систем за счет давления воды высоко расположенных зданий. На графике это условие выразится тем, что уровни высоко расположенных зданий не должны превышать больше чем на 55 м уровни земли у других зданий.

7. Давление в любой точке системы не должно превышать максимально допустимое из условий прочности оборудования, деталей и арматуры. Обычно принимают максимальное избыточное давление Р доп =16…22 кгс/см 2 . Это означает, что и пьезометрический напор в любой точке подающего трубопровода (от уровня земли) должен быть не менее Н доп – 5 м (с запасом5 м ):

Н под – Н з Н доп – 5 м .

8. Располагаемый напор (разность пьезометрических напоров в подающем и обратном трубопроводах) на вводах в здания должен быть не менее потери напора в системе абонента:

Н р = Н под – Н обр Н зд .

Таким образом, пьезометрический график позволяет обеспечить эффективный гидравлический режим тепловой сети и подобрать насосное оборудование.

Контрольные вопросы

1. Изложите основные задачи выбора режима давлений водяных тепловых сетей из условия надежности работы системы теплоснабжения.

2. Что такое гидродинамический и статический режимы работы тепловой сети? Обоснуйте условия определения положения статического уровня.

3. Представьте методику построения пьезометрического графика.

4. Изложите требования к определению положения на пьезометрическом графике линий давления в подающей и обратной магистралях тепловой сети.

5. На основе каких условий на пьезометрическом графике наносятся наносятся уровни допустимых максимальных и минимальных пьезометрических напоров для подающей и обратной линий системы теплоснабжения?

6. Что такое «нейтральная» точка» на пьезометрическом графике и при помощи какого устройства на ТЭЦ или котельной регулируется ее положение?

7. Как определяется рабочий напор сетевых и подпиточных насосов?

Для водяных тепловых сетей могут разрабатываться следующие гидравлические режимы:

расчетный - по расчетным расходам сетевой воды;

зимний - при максимальном отборе воды на горячее водоснабжение из обратного трубопровода;

переходный - при максимальном отборе воды на горячее водоснабжение из подающего трубопровода;

летний - при максимальной нагрузке горячего водоснабжения в неотопительный период;

статический - при отсутствии циркуляции теплоносителя в тепловой сети;

аварийный.

Эквивалентную шероховатость внутренней поверхности новых стальных труб для водяных тепловых сетей следует принимать k э = 0,0005 м;

Гидравлические режимы водяных тепловых сетей (пьезометрические графики) следует разрабатывать для отопительного и неотопительного периодов.

Пьезометрический график позволяет: определить напоры в подающем и обратном трубопроводах, а также располагаемый напор в любой точке тепловой сети; с учетом рельефа местности, располагаемого напора и высоты зданий выбрать схемы присоединения потребителей; подобрать авторегуляторы, сопла элеваторов, дроссельные устройства для местных систем теплопотребления; подобрать сетевые и подпиточные насосы.

Пьезометрические графики строятся для магистральных и квартальных тепловых сетей. Для магистральных тепловых сетей могут быть приняты масштабы: горизонтальный М г 1:10000; вертикальный М в 1:1000; для квартальных тепловых сетей: М г 1:1000, М в 1:500.

Пьезометрические графики строятся для статического и динамического режимов системы теплоснабжения. За начало координат в магистральных сетях принимают местоположение ТЭЦ. В принятых масштабах строят профиль трассы и высоты присоединенных потребителей (приняв 9-ти этажную застройку). За нулевую отметку оси ординат (оси напоров) принимают обычно отметку низшей точки теплотрассы или отметку сетевых насосов. Строят линию статического напора, величина которого должна быть выше местных систем теплопотребления не менее чем на 5 метров, обеспечивая их защиту от «оголения», и в то же время должна быть менее на 10 или более метров величины максимального рабочего напора для местных систем. Статический напор в системах теплоснабжения при теплоносителе воде должен определяться для температуры сетевой воды, равной 100 °С..

Величина максимального рабочего напора местных систем теплопотребления составляет: для систем отопления со стальными нагревательными приборами и для калориферов - 80 метров; для систем отопления с чугунными радиаторами - 60 метров; для независимых схем присоединения с поверхностными теплообменниками - 100 метров.

Затем приступают к построению графиков напоров для динамического режима. На оси ординат откладывают требуемый напор у всасывающих патрубков сетевых насосов (30 - 35 метров) в зависимости от марки насоса. Давление и температура воды на всасывающих патрубках сетевых, подпиточных, подкачивающих и смесительных насосов не должны быть ниже давления кавитации и не должны превышать допускаемых по условиям прочности конструкций насосов.

Затем, используя результаты гидравлического расчета, строят линию потерь напора обратной магистрали. Величина напоров в обратной магистрали должна соответствовать требованиям указанным выше при построении линии статического напора. Напор воды в обратных трубопроводах водяных тепловых сетей при гидродинамическом режиме должен быть избыточным (не менее 5 метров), быть выше местных систем теплопотребления не менее чем на 5 метров, обеспечивая их защиту от «оголения», и в то же время должен быть меньше на 10 (или более метров) величины максимального рабочего напора для местных систем теплопотребления. Далее строится линия располагаемого напора для системы теплоснабжения расчетного квартала величина которого может быть принята 40 - 50 м.

Затем строится линия потерь напора подающего трубопровода, а также линия потерь напора в коммуникациях источника теплоты (ТЭЦ). При отсутствии данных, потери напора в коммуникациях ТЭЦ могут быть приняты равными

25 - 30 м. Напор во всех точках подающего трубопровода, исходя из условия его механической прочности, не должен превышать 160 м. Следует также учитывать, что напор в подающих трубопроводах водяных тепловых сетей при работе сетевых насосов должен обеспечить «невскипание» воды при ее максимальной температуре.

Пьезометрический график при изменении напора подпиточного насоса может быть перемещен параллельно себе вверх или вниз, если возникает опасность «оголения» или «раздавливания» местных систем теплопотребления.

При этом необходимо учитывать, чтобы напор на всасывающем патрубке сетевого насоса не превысил предельного значения для принятой марки насоса как по минимуму так и по максимуму (см. приложение 19 учебного пособия). Под пьезометрическим графиком располагают спрямленную однолинейную схему теплотрассы с ответвлениями, указывают номера и длины участков, диаметры трубопроводов, расходы теплоносителя, располагаемые напоры в узловых точках. На пьезометрическом графике главной магистрали строится график расчетного ответвления.

Пьезометрические графики должны быть построены и для неотопительного периода. В закрытых системах для этого необходимо определить потери

напора в подающем и обратном трубопроводах главной магистрали при про-

пуске максимального расхода сетевой воды на горячее водоснабжение в неото-

пительный период . В открытых системах потери напора в подающей

магистрали определяют при пропуске расхода равного

, в обратной магистрали при пропуске расхода равного 10%

(см. также подбор сетевых и подпиточных насосов…). Потери напора в коммуникациях источника, а также располагаемый напор перед расчетным кварталом принимают такими же, как и для отопительного периода.

При построении пьезометрического графика для квартальных сетей сле-

дует учитывать, что квартальные сети являются продолжением магистральных

сетей, и линии напоров пьезометрического графика квартальных сетей и при статическом и при динамическом режимах будут продолжением соответствующих линий пьезометрического графика магистральных тепловых сетей.

Располагаемый напор в начале квартальных сетей должен быть использован

на потери напора в подающей и обратной магистралях квартальных сетей и на

потери напора в местных системах теплопотребления зданий кварталов. При

построении пьезометрического графика для квартальных сетей, располагаемый

напор на вводе в здание, (при элеваторном присоединении системы отопления), следует принимать равным расчетным потерям напора на вводе и в местной системе с коэффициентом 1,5 , но не менее 15 метров, а при наличии кроме элеваторной системы отопления и закрытой системы горячего водоснабжения, - 25 метров. Избыточный напор рекомендуется гасить в авторегуляторах тепловых пунктов зданий.

ГЛАВА VII ГИДРАВЛИЧЕСКИЕ РЕЖИМЫ ТЕПЛОВЫХ СЕТЕЙ § VII.1. ОСНОВЫ ГИДРАВЛИЧЕСКОГО РЕЖИМА Гидравлическим режимом определяется взаимосвязь между расходом теплоносителя и давлением в различных точках системы в данный момент времени. Расчетный гидравлический режим характеризуется распределением теплоносителя в соответствии с расчетной тепловой нагрузкой абонентов. Давление в узловых точках сети и на абонентских вводах равно расчетному. Наглядное представление об этом режиме дает пьезометрический график, построенный по данным гидравлического расчета. Однако в процессе эксплуатации расход воды в системе изменяется. Переменный расход вызывается неравномерностью водопотребления на горячее водоснабжение, наличием местного количественного регулирования разнородной нагрузки, а также различными переключениями в сети. Изменение расхода воды и связанное с ним изменение давления приводят к нарушению как гидравлического, так и теплового режима абонентов. Расчет гидравлического режима дает возможность определить перераспределение расходов и давлений в сети и установить пределы допустимого изменения нагрузки, обеспечивающие безаварийную эксплуатацию системы. Гидравлические режимы разрабатываются для отопительного и летнего периодов времени. В открытых системах теплоснабжения дополнительно рассчитывается гидравлический режим при максимальном водоразборе из обратного и подающего трубопроводов. Расчет гидравлического режима базируется на основных уравнениях гидродинамики. В тепловых сетях, как правило, имеет место квадратичная зависимость падения давления ΔР (Па) от расхода: ΔP=SV(VII.1) где S характеристика сопротивления, представляющая собой падение давления при единице расхода теплоносителя, Па/(м/ 3 ч) 2 ; V расход теплоносителя, м 3 /ч.


Значение характеристики сопротивления находится из совмест­ного решения уравнений (VII.1), (VI.2), (VII.3): АР ^ л(/+;э) -=Л {t+ " 9) о-(VII.2) Л,=0,0894^,(VII.3) где z=3600 с; A 8 -постоянный коэффициент, зависящий от шероховатости стенок трубопроводов: Как следует из уравнений (VII.2) и (VII.3), характеристика сопротивления зависит от геометрических размеров сети, шероховатости стенок трубопроводов и плотности теплоносителя. При известных расходах и соответствующим им потерям давления харак­теристика сопротивления находится из уравнения (VII.1). При разработке гидравлического режима часто используют линейную единицу давления, называемую напором. Рис. VII.1. Характеристика тепловой сети и насоса: 1расчетная характеристика: 2 характеристика сети после отключения абонента; 3 характеристика насоса


Рис. VII.2. Последовательное (а) и параллельное (б) соединение участков Графическое изображение потерь напора от расхода является характеристикой сети. Характеристика тепловой сети представляет собой квадратичную параболу, проходящую через начало координат (рис. VII.I). Пересечение характеристики сети с характериcтикой насоса (точка А) определяет режим работы насоса на данную сеть. В процессе эксплуатации характеристика сопротивления сети изменяется в связи с присоединением новых абонентов, отключением части нагрузки, при изменении шероховатости стенок трубопроводов. Определим характеристику сопротивления разветвленной сети, состоящей из ряда последовательно и параллельно соединенных участков. Общие потери давления ΔР в сети, состоящей из последовательно соединенных участков с неизменным расходом V (рис. VII.2, а), складываются из потерь давления на каждом участке где ΔP 1, ΔР 2, ΔP 3 потери давления на отдельных участках сети. Выразив потери давления через расход и характеристики сопротивления по формуле (VII. 1), получим где sхарактеристика сопротивления сети; S 1,S 2, S 3 характеристики сопротивления ее составных участков. Отсюда следует Следовательно, суммарная характеристика сопротивления после­довательно соединенных участков сети равна сумме характеристик сопротивления этих участков. При параллельном соединении (рис.VII.2, б) общий расход в сети равен сумме расходов на ответвлениях


Расход воды согласно выражению (VII. 1) может быть представлен в виде: Ввиду равенства потерь давления в параллельно соединенных участках сети (АР = АР 1 = АР 2 =АР 3) выражение (VII.7) примет вид: Величина 1/S представляет собой гидравлический показатель, называемый проводимостью, равный расходу воды при перепаде давления в 1 Па: С учетом зависимости (VI 1.10) получим: где апроводимость сети; а 1, а 2, а 3 проводимости отдельных ее участков, м 3 /ч·Па 0>5. Таким образом, суммарная проводимость параллельно соединенных участков равна сумме проводимостей этих участков. На основе равенств (VII.6) и (VII.11) определяется характери­стика сопротивления разветвленной сети по известным проводимостям или характеристикам сопротивления отдельных ее участков. С помощью полученных зависимостей производится расчет гидравлического режима системы. 5. Таким образом, суммарная проводимость параллельно соединенных участков равна сумме проводимостей этих участков. На основе равенств (VII.6) и (VII.11) определяется характери­стика сопротивления разветвленной сети по известным проводимостям или характеристикам сопротивления отдельных ее участков. С помощью полученных зависимостей производится расчет гидравлического режима системы.">


§ VII.2. РАСЧЕТ ГИДРАВЛИЧЕСКОГО РЕЖИМА В автоматизированной системе с регуляторами РР для отопления и регуляторами температуры РТ для горячего водоснабжения расход воды у абонентов определяется только величиной их тепловой нагрузки. Постоянство заданного расхода на отопительном вводе поддерживается настройкой регулятора: при уменьшении располагаемого давления на вводе увеличивается степень открытия клапана регулятора. Расчет гидравлического режима такой системы сводится к определению потерь давления при известных расходах воды. В случае отсутствия: на вводах авторегуляторов изменение расходов и давления в сети вызывает перераспределение расходов в магистральных трубопроводах и на абонентских вводах. Расчет гидравлического режима дает возможность определить расходы воды и соответствующие им потери давления при изменившихся условиях работы системы.


Исходными данными служат: схема сети, расчетный пьезомет­рический график и давление на коллекторах ТЭЦ. Рассмотрим схему тепловой сети, имеющей п абонентов (рис. VII.3). Характеристики сопротивления магистральных участков обозначим соответственно S I,S II,S III,..., S N, а характеристики сопротивления абонентов с учетом ответвлений S 1, S 2, S 3,..., S n. Суммарный расход воды в сети равен V, расход воды на абонентских вводах-V i (с индексом, соответствующим его номеру). Начиная с первого абонента, запишем условия равенства потерь давления в параллельных участках сети AS 1 A и AS n A: где S 1-n характеристика сопротивления сети от абонента 1 до n-го включительно со всеми ответвлениями, определяемая по формулам (VII.6) и (VII.И). Из уравнения (VII.12) найдем относительный расход воды у абонента I; Для абонентского ввода 2 можно записать: где S 2-n суммарная характеристика сопротивления сети от абонента 2 до п-го включительно со всеми ответвлениями. Но, с другой стороны, перепад давлений в узле А равен: Из совместного решения уравнений (VII. 14) и (VII. I5) найдем относительный расход воды у второго абонента:


Где S II-n =S II -S 2-n По аналогии для любого m-го абонента системы, состоящей из п потребителей, получим: Таким образом, если известны суммарный расход воды и характеристики сопротивления отдельных участков сети, то можно найти расход воды через, любую абонентскую установку.


Пример 1. Схема тепловой сети и расчетный пьезометрический график, показаны на рис. VII.4. Расчетные, расходы воды и соответствующие им потери давления приведены в табл.VII.1. Определить расходы воды и потери напора в сети при отключении абонента 2. Построить характеристику сети для расчетного и нерасчетного, режимов. При расчете принять, что давление насоса остается постоянным к равным 372·10 3 Па. Плотность воды принимаем р=975 кг/м 3. Решение. Расчетная характеристика сопротивления системы находится из формулы (VII.1) по данным. расчетного режима: Для построения характеристики сети задаемся расходами воды и определяем соответствующие им потери напора при S=1,16. Характеристики сети и насоса показаны на рис. VII.1. Определяем характеристики сопротивления магистральных участков сети а абонентов по известным расходам и потерям давления для расчетного режима по формуле (VII.I.). Результаты расчета приведены в табл. VII.1. Далее находим характеристики сопротивления и проводимости отдельных узлов системы после отключения абонента 2. Для этого суммируем характеристики сопротивления последовательно соединенных участков или проводимости параллельных участков.


Характеристика сопротивления магистральных участков II, III и абонента после отключения потребителя 2 составит: Проводимость участков II3 Суммарная проводимость участков II3 и абонента 1 Общая характеристика сопротивления этих участков сети составляет: Суммарная характеристика сопротивления всей системы после отключения абонента 2 равна Как видно из приведенного расчета, характеристика сопротивления системы при отключении параллельного участка увеличивается. Характеристика сети после отключения абонента 2 построена по зависимости (VII. 1) при 5=2,313 (см. рис. VII.1) Расход воды у абонента I определим по формуле (VII.13)


Расход воды у абонента 3 Потери давления и напора на участках сети: Располагаемые напоры в узловых точках равны: По найденным величинам строим пьезометрический график для нового режима (рис. VII.4). На основе расчета гидравлического режима решается целый ряд вопросов, связанных с эксплуатацией системы теплоснабжения, а именно: возможность присоединения новых абонентов к существующей сети, аварийное резервирование системы, проверяется работа сети при максимальном водоразборе на горячее водоснабжение. Методы ручного счета весьма трудоемки, а в ряде случаев, например для многокольцевых сетей, практически неприемлемы. ВТИ разработаны алгоритмы и программы расчета гидравлических режимов тепловых сетей на ЭЦВМ. С их помощью решены многочисленные задачи по расчету и исследованию гидравлических режимов систем теплоснабжения ряда городов страны.


§ VII.3. ГИДРАВЛИЧЕСКАЯ УСТОЙЧИВОСТЬ СИСТЕМ ТЕПЛОСНАБЖЕНИЯ Под гидравлической устойчивостью понимают способность системы сохранять постоянный расход теплоносителя на абонентских вводах при изменении условий работы других потребителей. Гидравлическая устойчивость количественно оценивается коэффициентом гидравлической устойчивости где V, V макс соответственно расчетный и максимально возможный расход сетевой воды на абонентском вводе. Коэффициент гидравлической устойчивости У=1 может быть в принципе достигнут установкой на вводах регуляторов расхода, автоматически обеспечивающих постоянство расхода воды в абонентских системах. В реальных условиях эксплуатации У1, В неавтоматизированной системе любые переключения в сети изменяют расходы воды у абонентов. Так, например, при отключении части нагрузки расход воды в тепловой сети уменьшается, что приводит к снижению потерь давления в сети и к росту рас полагаемых давлений на вводах. Расход воды у оставшихся абонентов возрастает. Отклонение фактического расхода от расчетной величины вызывает гидравлическую разрегулировку абонентских систем. Максимальная разрегулировка абонентской системы произойдет в том случае, когда останется включенным только один потребитель. Падение давления в сети при этом будет настолько незначительным, что, пренебрегая им, можно принять располагаемый перепад давлений на вводе равным расчетному давлению сетевого насоса. Тогда, заменив в равенстве (VII. 18) отношение расходов воды отношением потерь давления, получим где ΔР аб располагаемое давление на вводе при расчетном расходе воды; ΔР С потери давления в сети при расчетном режиме; Р н = ΔР аб +ΔР с давление сетевого насоса.


Из выражения (VII.19) следует, что гидравлическая устойчивость системы повышается с уменьшением потерь давления в магистральных сетях и с увеличением гидравлического сопротивления абонентских установок. С этой целью целесообразно уменьшение диаметров вводов, установка на вводах дроссельных шайб. Задвижки на магистральных трубопроводах должны быть полностью открыты. Некоторые случаи разрегулировки сети приведены на рис. VII.5. При частичном прикрытии запорной арматуры на вводе в здание или полном отключении абонента характеристика сопротивления сети увеличивается, что приводит к снижению общего расхода воды в системе. Потери давления на участке от источника теплоснабжения до отключенного абонента 3 уменьшаются, в результате чего возрастают давления на вводах (рис. VII, 5, а). Расход воды у всех оставшихся абонентов возрастает. Такая разрегулировка, когда знак изменения расходов у всех абонентов одинаков,


Называется соответственной. Для количественной оценки разрегулировки сопоставим расходы воды у абонентов. Отношение расходов у абонентов 4 и 6 из уравнения (VII.17) составляет: Как следует из выражения (VI 1.20), отношение расходов воды, зависит только от характеристики сопротивления сети на участках от абонента 4 до конечной точки сети. Поэтому при изменении характеристики сопротивления на каком-либо участке сети у всех абонентов, расположенных между этим участком и концевой точкой сети, степень изменения расхода одинакова. Такая разрегулировка называется пропорциональной. Она имеет место у абонентов 4, 5, 6. У абонентов, расположенных между источником теплоснабжения и местом изменения сопротивления, происходит непропорциональная разрегулировка, причем чем ближе абонент расположен к источнику теплоснабжения, тем меньше изменение перепада давлений и, следовательно, расхода. Ближайшие к ТЭЦ абоненты обладают, как правило, большей гидравлической устойчивостью. Увеличение давления сетевого насоса (рис. VII. 5) при неизменной характеристике сопротивления сети приводит к пропорциональному росту располагаемых давлений на вводах. В системе происходит соответственная пропорциональная разрегулировка. Если частично прикрыть задвижку на магистральном трубопроводе, то общий расход воды в системе сократится. Однако изменение расходов воды у абонентов будет неодинаковым. Так частичное прикрытие задвижки на обратной магистрали (рис. VII.5, б) сокращает расход сетевой воды и потери давления в сети. Располагаемые давления на вводах абонентов, расположенных между источником теплоснабжения и задвижкой, увеличиваются. Поэтому расходы воды у абонентов 1 и 2 возрастают. Повышение давления в обратной магистрали перед задвижкой приводит к уменьшению располагаемых давлений у абонентов, находящихся перед задвижкой. Расходы воды в абонентских системах 36 уменьшаются. В системе происходит несоответственная разрегулировка, при которой знак изменения расходов у абонентов неодинаков. Приведенные примеры показывают большое разнообразие возможных изменений гидравлического режима в зависимости от условий эксплуатации системы.


§ VII.4. РЕГУЛИРОВАНИЕ ДАВЛЕНИЯ В ТЕПЛОВЫХ СЕТЯХ Для обеспечения надежной работы тепловой сети и абонентских установок необходимо ограничить изменение давления в системе допустимыми пределами. При этом особое значение имеет режим подпитки и изменение давления в обратной магистрали. Повышение давления в обратном трубопроводе может вызвать недопустимый рост давлений в отопительных системах, присоединенных по зависимым схемам. Падение давления приводит к опорожнению верхних точек местных систем и к нарушению циркуляции в них. Для ограничения колебаний давления в системе в одной, а при сложном рельефе местности в нескольких точках сети изменяют давление в зависимости от режима работы системы. Такие точки называются точками регулируемого давления. В тех случаях, когда по условиям работы системы давление в этих точках поддерживается постоянным как при статическом, так и при динамическом режимах, они называются нейтральными. Постоянное давление в нейтральной точке поддерживается автоматически подпиточным устройством. В небольших по протяженности сетях, когда статическое давление может быть равно давлению у всасывающего патрубка сетевого насоса, нейтральная точка О устанавливается у всасывающего патрубка сетевого насоса (рис. VII.6). Давление подпиточного насоса, выбранное из условия заполнения системы водой, сохраняется неизменным и при динамическом режиме, что обеспечивает наиболее простую схему подпиточного устройства.


В разветвленных тепловых сетях (рис. VII.7) закрепление нейтральной точки на одной из магистралей не обеспечивает необходимой устойчивости гидравлического режима. Допустим, что нейтральная точка О закреплена на обратной магистрали района II (график 1). При сокращении расхода воды в сетях этого района потери давления в трубопроводах уменьшаются, что при постоянном давлении в точке О приводит к росту давления у всасывающего патрубка сетевого насоса и к соответствующему повышению давления в магистралях района I (график 2). При прекращении циркуляции в сети района II давление во всасывающем патрубке сетевого насоса повысится до статического. Это приведет к дальнейшему росту давления во всех точках системы района I (график 3) и может быть причиной аварий в абонентских системах.


Поэтому нейтральную точку не следует размещать ни на одной из работающих магистралей. Закрепление нейтральной точки должно быть сделано на специально выполненной перемычке у сетевого насоса. Во время работы насоса в перемычке происходит циркуляция воды. Падение давления в перемычке равно падению давления в сети (рис. VII.8,а). Давление в нейтральной точке используется в качестве импульса, регулирующего величину подпитки. При падении давления в системе и понижении давления в точке О увеличивается открытие регулятора подпитки РП и возрастает подача воды подпиточным насосом. С ростом давления в сети, например, при повышении температуры сетевой воды, давление в нейтральной точке возрастает, и клапан РП прикрывается, уменьшая подачу воды. Если после закрытия клапана РП давление продолжает расти, то дренажный клапан ДК сливает часть воды, и давление восстанавливается.


Регулирование давления в сети можно осуществить с помощью регулировочных вентилей 1 и 2 на перемычке насоса (рис. VII.8, а). Так, частичное прикрытие вентиля 1 увеличивает давление у всасывающего патрубка сетевого насоса, что приводит к росту давления в сети. При полностью закрытом вентиле 1 циркуляция в перемычке прекращается, и давление у всасывающего патрубка H вс становится равным давлению в точке О, Давление в системе возрастает. Пьезометрический график перемещается вверх параллельно самому себе и занимает предельно высокое положение (рис. VII.9, график 2). Если закрыт регулировочный вентиль 2 (см. рис. VII.8), то давление на нагнетательном патрубке сетевого насоса становится равным давлению в нейтральной точке. Пьезометрический график переместится вниз до предельно низкого положения (график 3). При сложном рельефе местности с большой разностью геодезических отметок или в случае присоединения группы зданий повышенной этажности не всегда представляется возможным принять одну величину гидростатического давления для всех абонентов. В этих условиях необходимо разделить систему на зоны с независимым гидравлическим режимом (рис. VII.10). Основная нейтральная точка О


Закрепляется на перемычке сетевого насоса СН. Статическое давление S I S I придерживается автоматически регулятором подпитки РП 1 и подпиточным насосом ПН 1. Дополнительная нейтральная точка О II размещается на обратной линии в зоне II. Постоянное давление в ней поддерживается с помощью регулятора давления «до себя» РДДС. В случае прекращения циркуляции в сети и падения давления в верхней зоне РДДС закрывается, одновременно закрывается и обратный клапан ОК, установленный на подающей линии. Благодаря этому верхняя зона гидравлически изолируется от нижней. Подпитка верхней зоны осуществляется с помощью подпиточного насоса ПН II И регулятора подпитки РП II по импульсу давлений в точке O II. § VII.5. ВЛИЯНИЕ ГОРЯЧЕГО ВОДОСНАБЖЕНИЯ НА ГИДРАВЛИЧЕСКИЙ РЕЖИМ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ Гидравлический режим систем теплоснабжения в значительной степени зависит от нагрузки горячего водоснабжения. Суточная неравномерность водопотребления, а также сезонное изменение расхода сетевой воды на горячее водоснабжение существенно изменяют гидравлический режим системы. При отсутствии регуляторов расхода переменная нагрузка горячего водоснабжения вызывает изменение расходов воды как в тепловой сети, так и в отопительных системах, особенно на концевых участках сети. Центральное регулирование гидравлическим режимом в таких случаях возможно лишь при обеспечении одинаковой степени изменения расхода воды на отопление у всех потребителей. Исследованиями доказано, что для пропорциональной разрегулировки отопительных систем должны быть выполнены следующие условия: 1)отношение расчетных расходов воды на горячее водоснабжение и отопление должно быть одинаково у всех абонентов при одинаковом суточном графике водопотребления; 2)при начальной регулировке системы, производимой при расчетном расходе воды на вводах, у всех абонентов устанавливаются одинаковые полные давления в подающей линии перед элеватором H пэ и в обратном трубопроводе после отопительной системы H оэ.


Для гашения избыточных напоров в узлах ввода должны быть установлены дроссельные шайбы на подающем и обратном трубопроводах. Ввиду этого перепады напоров на всех вводах одинаковы. Гидравлический режим такой системы (рис. VII.11) эквивалентен режиму тепловой сети с одним эквивалентным абонентом, у которого расчетные расходы на вводе равны суммарным расходам в реальной сети. Установим зависимость расхода сетевой воды на отопление от режима водопотребления. Для расчетного режима потери давления в системе равны при изменении расчетных условий


Где P н расчетное давление насоса; ΔР п,ΔP э, ΔP об расчетные потери давления соответственно в подающей магистрали, абонентском узле ввода и в обратном трубопроводе тепловой сети; P н, ΔР п,ΔP э, ΔP об те же величины при нерасчетных условиях. В закрытой системе теплоснабжения расчетный расход воды в сетях определяют по сумме расчетных расходов на отопление и горячее водоснабжение. Выразим потери давления через отношение расходов воды при нерасчетном и расчетном режимах. С учетом квадратичной зависимости потерь давления от расхода уравнение (VII.22) примет вид где V o,V p.г расчетные расходы сетевой воды соответственно на отопление и горячее водоснабжение; V o,V г расходы сетевой воды на отопление и горячей водоснабжение при нерасчетных условиях. Обозначим: φ = V о /V o относительный расход воды на отопление, равный отношению фактического расхода V o к расчетному V" o ; n =V г /V о " относительный расход сетевой воды на горячее водоснабжение; n p = V p.г /V 0 расчетный относительный расход воды на горячее водоснабжение, равный отношению расчетного расхода сетевой воды на горячее водоснабжение к расчетному отопительному расходу воды. После алгебраических преобразований с учетом принятых обозначений уравнение (VII.23) запишется в виде где ΔP п = ΔР п / P н; ΔP об = ΔP об / P н; ΔP э = ΔP э / P н относительные потери давления соответственно в подающем и обратном трубопроводах тепловой сети и в абонентском узле ввода. При равенстве расходов и потерь давления в подающем и обратном трубопроводах уравнение (VII.24) упрощается:


Отсюда относительный расход воды на отопление составит: где a=Р н / P н. Изменение относительного расхода воды на отопление в зависимости от нагрузки горячего водоснабжения п для различных соотношений потерь давления в магистральных трубопроводах и на абонентском вводе показано на рис. VII.12. Из уравнения (VII.26) и рис. VII.12 следует, что при постоянном давлении сетевого насоса относительный расход воды на отопление возрастает


По мере сокращения нагрузки горячего водоснабжения, причем это изменение тем больше, чем ниже гидравлическая устойчивость сети. Увеличение расхода воды на отопление приводит к перерасходу тепла. Наиболее значительные колебания расхода сетевой воды происходят при параллельной схеме присоединения подогревателей горячего водоснабжения. Для двухступенчатой смешанной схемы включения водоподогревателей влияние нагрузки горячего водоснабжения уменьшается за счет сокращения расчетного расхода воды на горячее водоснабжение. В открытых системах теплоснабжения гидравлический режим зависит как от величины, так и от места водоразбора. При установке на абонентских вводах регуляторов расхода РР по принципу связанного регулирования (см. рис. IV. 19) расход воды в подающем трубопроводе поддерживается постоянным при любой величине водоразбора. Расход воды и давление в обратном трубопроводе будут зависеть лишь от нагрузки горячего водоснабжения. С ростом водоразбора уменьшается расход воды в обратном трубопроводе, вследствие чего снижаются и потери давления в нем (рис. VII. 13). При отсутствии регуляторов расхода водоразбор, отличающийся от расчетного, вызывает изменение расходов воды в магистральных трубопроводах и в отопительных системах. Водоразбор из обратной линии увеличивает располагаемые давления в сети за счет уменьшения потерь давления в обратном трубороводе (рис. VII. 14). Рост располагаемых давлений на вводах, в свою очередь, несколько повышает расход сетевой воды в отопительных системах и в подающем трубопроводе. Для оценки количественного влияния водоразбора на гидравлический режим открытой системы воспользуемся уравнениями (VII.21) и (VII.22). Примем, что расчетные условия соответствуют расходу воды в подающем и обратном трубопроводе при температуре наружного воздуха в точке излома температурного графика t" н (см. рис. IV.24). Потери давления при нерасчетном водоразборе определяем из уравнения


Где Vp.г расчетный расход воды на горячее водснабжение; β доля водоразбора на горячее водоснабжение из подающего трубопровода. С учетом ранее принятых обозначений выражение (VII.27) может быть преобразовано к виду Из уравнения (VII.28) определяется относительный расход коды на отопление ф в зависимости от величины и места водоразбора при заданном давлении насоса. Влияние водоразбора на гидравлический режим тем больше, чем ниже гидравлическая устойчивость системы (рис. VII.15). Как видно из графиков, расход воды на отопление практически не зависит от величины водоразбора при β = 0,5. Поэтому для уменьшения влияния горячего водоснабжения целесообразно производить наладку системы при частичном водоразборе из подающего и обратного трубопроводов.


Поскольку значения пир зависят от величины водопотребления и температуры воды в сети, постоянный расход воды в отопительных установках (ф=1) может быть поддержан только измением давления насоса. Из уравнения (VII.28) при ф= 1 следует В частном случае при водоразборе из обратной магистрали (β = 0) давление насоса должно снижаться пропорционально росту нагрузки горячего водоснабжения: При отсутствии водоразбора давление насоса должно быть равно: Пример 2. Определить расходы воды и потери давления в открытой системе теплоснабжения при максимально часовом водоразборе из обратного трубопровода. Расходы воды на отопление и горячее водоснабжение у всех абонентов одинаковы и равны: V 0 = 100 м 3 /ч, V ср.г =45м 3 /ч (Q cp.г / Q 0 =0.31). Коэффициент часовой неравномерности k =2. Схема системы и расчетный пьезометрический график приведены на рис. VII.14. При расчете принять, что напор насоса постоянен и равен H н =34.3 м. Решение. Расчетные расходы воды и подающем и обратном трубопроводах равны: Определим относительные расходы воды на горячее водоснабжение. При расчетных условиях при максимальном водозаборе


Относительные потери напора составят: Подставив полученные значения в формулу (VII.28) при β=0 и n=0,9, получим Отсюда ф=3. Расход воды на отопление у абонента составит: Потери напора при максимальном часовом водоразборе равны: На основании расчета построен пьезометрический график (см. рис. VII.14). Как видно из графика, при максимально часовом водоразборе из обратного трубопровода пьезометрический напор в обратной линии меньше высоты абонента 2. Для предотвращения опорожнения местной системы предусматривается установка регулятора давления «до себя» на обратной линии узла ввода.


§ VII.6 ГИДРАВЛИЧЕСКИЙ РЕЖИМ СЕТЕЙ С НАСОСНЫМИ И ДРОССЕЛИРУЮЩИМИ ПОДСТАНЦИЯМИ Работа крупных тепловых сетей при сложных рельефах местности практически невозможна без подстанций. С их помощью облегчается решение таких инженерных задач, как повышение пропускной способности действующих сетей, увязка гидравлических режимов, увеличение радиуса действия сетей, расширение возможностей центрального регулирования и др. Насосные подстанции подразделяются на подкачивающие и смесительные. Подкачивающие подстанции устраиваются на подающих и обратных трубопроводах для повышения или снижения напоров. Подстанции на обратном трубопроводе обычно предусматриваются при значительном понижении рельефа местности в направлении от источника тепла до потребителей или при большой протяженности сетей (рис. VII. 16). Гидравлические режимы сетей с насосными подстанциями изменяются различно в зависимости от наличия или отсутствия на абонентских вводах регуляторов расхода. Во всех случаях давление в обратном трубопроводе при выключенной насосной подстанции для концевых потребителей может превысить пределы прочности отопительных приборов. Включение в работу насосной подстанции при неавтоматизированных абонентских вводах приводит к увеличению общего расхода воды в сетях и росту потерь напора, в связи с чем уклоны пьезометрических линий увеличиваются. Поэтому располагаемые напоры на участках между ТЭЦ и подстанцией уменьшаются, а на участках между подстанцией и концевым потребителемувеличиваются. В результате наблюдается несоответственная разрегулировка абонентских систем. На абонентских вводах с регуляторами расхода (РР) включение насосной подстанции не изменяет расхода воды в сети. В результате уклоны пьезометрических линий остаются неизменными, но на участках между подстанцией и концом сети напор в обратном трубопроводе уменьшается на величину напора, развиваемого насосами подстанции. Включение насосной подстанции на обратной магистрали дает возможность увеличить недостаточный располагаемый напор у концевых абонентов. Насосная подстанция разделяет тепловую сеть на две зоны с самостоятельными гидравлическими режимами, а при сложном, рельефе местности и различными статическими уровнями S I S I И S II S II. Аварийная остановка насосов подстанции вызывает изменение гидравлического режима 2 на режим 1. Для предупреждения недопустимого роста давления у концевых потребителей устанавливаются мембранные клапаны рассечки МК, которые с повышением давления в нейтральной точке О II полностью закрываются. Давление в отсеченной зоне II падает до статического. Под воздействием более высокого давления в обратном трубопроводе зоны I за подкачивающим насосом обратный клапан у подкачивающего насоса закрывается, в результате чего зона II низкого давления гидравлически изолируется от




Зоны I. Подпитка сети зоны II и поддержание статического давления S II S II в ней производится автоматическим перепуском воды из обратной линии зоны I, находящейся под большим давлением, в зону с меньшим давлением с помощью регулятора подпитки РП II. Насосные подстанции на подающем трубопроводе применяют при значительном подъёме рельефа местности в направлении от источника тепла к потребителям, а также при большой протяженности сетей (рис. VII.17). Разность геодезических отметок тепловой станции и потребителей может составлять несколько десятков и даже сотен метров. При едином для всей сети статическом напоре может произойти опорожнение у одних и раздавливание отопительных приборов у других потребителей. Поэтому тепловая сеть разбивается на независимые в статическом отношении зоны. Статический режим зоны II создается работой подпиточного насоса ПH II с потребным напором H в.п.. Циркуляцию воды можно обеспечить сетевым насосом с напором Н c.н.. Но такое решение не всегда экономически и технически целесообразно, так как большой напор насоса удорожает теплофикационное оборудование станции, увеличивает расход электроэнергии на перекачку теплоносителя и повышает опасность разрыва подающих трубопроводов и оборудования абонентских вводов на ближайших к источнику тепла участках. С включением насосных подстанций на подающем трубопроводе уклоны пьезометрических линий на графике давления изменяются лишь при отсутствии на абонентских вводах регуляторов расхода. Причини, вызывающие изменение уклонов пьезометрических линий, аналогичны описанным для обратного трубопровода. Меняя напор подкачивающего насоса Н н.п, можно создать нужные пределы располагаемых напоров в сетях зоны II. Защита потребителей зоны II от опорожнения производится с помощью регулятора подпора и рассечки РП и Р и регулятора давления РД. При понижении давления в точке а, вызванном остановкой подкачивающих насосов, регуляторы рассечки и давления закрываются, отключая сети зоны II, Постоянный статический напор S II S II поддерживается подпиточным насосом ПH II. Подкачивающие подстанции могут быть установлены одновременно на обеих магистралях. Производительность подкачивающих насосов принимают по расходу воды на участке сети в месте установки насосов. Напор насосов H н.п определяют по пьезометрическим графикам. Смесительные подстанции предназначены для понижения температуры сетевой воды с целью перехода с высокотемпературных графиков регулирования на более низкие путем подмешивания обратной воды. Смесительные подстанции устанавливают на транзитных магистралях (рис. VII.18) или на ответвлениях распределительных трубопроводов. При этом насосы размещают на перемычке между подающим и обратным трубопроводами, и они служат для подачи обратной воды к клапанам смешения, установленным на подающем трубопроводе.


В месте установки смесительной подстанции сеть разделяют на две зоны: высоких (зона I) и пониженных (зона II) температур и давлений теплоносителя. На границе зон вследствие дросселирования воды в регуляторе РД и клапане КСиР возникает небольшой перепад напоров ΔH п.с. Для нормальной работы сети необходимо, чтобы напор смесительных насосов превышал напор в подающем трубопроводе на 510 м. Производительность насосов V см определяют по формуле где V I расход воды в подающем трубопроводе, м 3 /ч; и коэффициент смешения, определяемый из соотношения где τ 1 расчетная температура воды в подающем трубопроводе; τ 1,с, τ 2,с, расчетные температуры воды в подающем и обратном трубопроводах после смешения.


При выключении смесительных насосов клапан КСиР закрывается, гидравлически разобщая зоны I и II. При этом с прекращением циркуляции воды в зоне II в подающем и обратном трубопроводах устанавливается давление, определяемое давлением в обратном трубопроводе в конце зоны I (режим, показанный на пьезометрическом трафике пунктиром). Смесительные подстанции применяют часто для автономного теплоснабжения рабочих районов (зона II), подключаемых к тепловым сетям (зона I) промышленных предприятии, в которых принят температурный график регулирования, недопустимый для отопления жилых домов. Смесительные подстанции наиболее эффективны в крупных двухтрубных (см. § XI.9), а также в однотрубных системах дальнего теплоснабжения (см. рис. II.7), когда в магистральных сетях температура сетевой воды превышает 150°С или когда большие группы потребителей не могут использовать сетевую воду с температурой 150°С. Дросселирующие подстанции используют для понижения давления теплоносителя к группам потребителей, расположенных на местности с большой разностью геодезических отметок. Уменьшение давления производят на отдельных участках магистральных сетей (рис. VII. 10) или на ответвлениях к потребителям. Такие подстанции применяют с целью типового присоединения отопительных приборов по наиболее простой зависимой схеме. Допустимые режимы динамического давления в нижней зоне I обеспечиваются на дроссельной подстанции регулятором давления «до себя», установленным на обратном трубопроводе. Регулятор давления настраивают на дросселирование напора H р.д, при котором давление в обратной линии зоны I не превышает 60 м. При аварийной остановке сетевого насоса статический напор S II S II в зоне II вследствие утечек начнет падать до статического напора S IS I. Защиту систем отопления зоны II от опорожнения производят отключением этих сетей с помощью обратного клапана на подающем трубопроводе и РДДС и включением подпиточного насоса ПН II установленных на подстанции.


§ VII.7. АВТОМАТИЗАЦИЯ НАСОСНЫХ ПОДСТАНЦИЙ Безаварийная работа тепловых сетей зависит от скорости производимых на подстанциях переключений резервного и защитного оборудования, поэтому крупные подстанции должны быть полностью автоматизированы. Одной из важнейших задач автоматизации является надежная гидравлическая изоляция зон с различными уровнями давлений. Отключение аварийного участка тепловой сети производится с помощью обратных клапанов, регуляторов давлений,


А также специальных автоматов. На рис. VII.19 приведена схема автомата для аварийного отключения сетей с насосными подстанциями на обратных трубопроводах. Принцип действия автомата рассмотрим на примере пьезометрического графика на рис. VII. 16. При повышении давления в нейтральной точке О II клапан 6 (рис. VII. 19) гидравлического реле перемещается вверх и перекрывает верхнее сопло 5. Через открытое нижнее сопло 5 полость под мембраной импульсного клапана сообщается с атмосферой. Клапан откроется, и слив воды из полости под мембраной клапана рассечки обеспечит в ней атмосферное давление. Высокое давление в верхней полости над мембраной клапана рассечки приведет к его закрытию. Циркуляция в сетях зоны II прекратится, а давление понизится до статического S II S II. Под действием более высокого давления в обратном трубопроводе зоны I закроется обратный клапан перед насосами. Дроссельная шайба 2 на импульсной линии между клапаном, рассечки и реле, увеличивая разность давлений, действующую на мембрану и клапанок импульсного клапана 3, способствует сокращению времени опорожнения полости под мембраной клапана рассечки. При возобновлении циркуляции в сети произойдет обратное действие приборов, и клапан рассечки откроется. Настройка автомата производится в зависимости от выбранного давления в нейтральной точке О II подбором пружины 8 и груза 9 реле давления. После срабатывания гидравлической защиты автоматически включается система подпитки отключенных сетей (рис. VII.20). Импульс на открытие регулятора подпитки поступает из точки А на подающем трубопроводе. Падение давления в точке А до уровня давления в нейтральной точке О II вызовет перемещение клапана 9 вверх до закрытия верхнего сопла реле давления, в результате чего на надмембранную полость регулятора подпитки будет действовать высокое давление в точке В на обратном трубопроводе зоны 1. Мембрана прогнется и откроет клапан регулятора подпитки. Величина открытия клапана регулируется с помощью иглы, вводимой в сопло, дросселирующее поток воды на линии между точкой В и мембранной полостью регулятора 1. Настройка давления подпитки производится регулировочным винтом 5 реле давления. Автоматическое регулирование насосной подстанции на подающем трубопроводе (рис. VII.21) основано на использовании регулирующих приборов, конструкции которых приведены на рис. VII. 19, VII.20. Регулятор давления РД поддерживает давление в сетях верхней зоны, а собственное гидравлическое сопротивление регулятора создает соответствие гидравлических характеристик подкачивающих насосов Н н.п и сети зоны II. Регулятор подпора и рассечки включается по двухимпульсной схеме на давление в точках А и О II. В качестве регулятора подпора прибор приводится в действие по импульсу давления в нейтральной точке О II. Аварийное падение давления в точке А приводит в действие прибор в качестве регулятора рассечки, вызывая через реле Р 2 открытие импульсного клапана и закрытие регулятора рассечки. Настройка регулятора производится подбором отверстия шайбы Ш такого диаметра, чтобы при нормальной работе




Насосов подстанции прибор действовал только в качестве регулятора подпора. После рассечки сети включаются подпиточные насосы ПН II. Сигнал аварийной подпитки верхней зоны поступает от контактного манометра, установленного вблизи нейтральной точки. Давление подпитки поддерживается регулятором подпитки РП 2 через реле Р з. В смесительной подстанции режим смешения регулируется клапаном смешения и рассечки (рис. VII.22). Расход воды на подмешивание устанавливается настройкой реле давления Р по величине перепада в расходной диафрагме Ш и подбором груза на рычаге клапана смешения. При аварийной остановке смесительных насосов клапан смешения действует как регулятор рассечки, так как падение давления до диафрагмы приводит к перемещению регулирующих органов в реле Р 2, вызывающих прогиб мембраны и закрытие клапана КС и реле Р. После отключения сетей зоны II регулятор РД приводится в состояние рабочей готовности открытием вентиля. С пуском смесительных насосов клапан КС и Р под давлением воды на нижнюю профилированную часть золотника автоматически открывается. С повышением давления в импульсных линиях и реле Р 2 приводит в действие регулятор давлений РД, контролирующий давление невскипания воды в зоне II.


На рис. VII.23 приведена схема автоматизации совмещенных насосной и дроссельной подстанций. В рабочем режиме реле давления Р-4, клапан РК-3, вентили автономного управления регулирующими клапанами В1 и В2 полностью закрыты. Давление в точке 3 передается на реле рассечки Р-1, а из него в надмембранные полости импульсных клапанов ИК-1 и ИК-2. Прогнувшись, мембраны перемещают штоки, полностью перекрывая нижние проходные сечения клапанов. Верхние проходные сечения импульсных клапанов ИК-1 и ИК-2 полностью открыты, поэтому клапа­ны РК-1 и РК-2 работают в режиме регулирования.


Повышение давления в точке 1 через систему автоматов Р-2 и ИК-1 воздействует на регулирующий клапан РК-1, который прикрывается, дросселируя часть напора, и давление в точке 1 уменьшается до заданного значения. Аналогично работает регулятор подпора РК-2 через реле Р-3 и импульсный клапан ИК-2. При аварийной остановке подкачивающих насосов на подающем трубопроводе и падении давления в точке 3 импульсные клапаны ИК-1 и ИК-2 открывают проходы для воды из точки 2 на гидроприводы клапанов РК-1 и РК-2. Регулирующие клапаны закрываются и рассекают теплосеть на гидравлически изолированные зоны. С падением давления в точке 1 включается в работу подпиточный насос ПН. Давление подпитки поддерживается на уровне статического давления зоны II клапаном РК-3 через реле давления Р-4. Когда включаются подкачивающие насосы, схема автоматически восстанавливает рабочий режим. § VII.8. РАСЧЕТ ПОТОКОРАСПРЕДЕЛЕНИЯ В ТЕПЛОВЫХ СЕТЯХ Устройство резервных перемычек, резервирующих подстанций, блокировочных перемычек для магистральных сетей, питающихся от нескольких источников тепла, превращает тепловые сети крупных городов в сложные многокольцевые системы. Гидравлический режим их очень чувствителен к изменениям расходов теплоносителя на отдельных участках сети. Принцип расчета таких систем основан на уравнениях Кирхгофа (применительно к тепловой сети), а именно: 1)ΣV=0, где ΣV алгебраическая сумма расходов воды в любом узле; 2) ΣSV 2 =0, где ΣSV 2 алгебраическая сумма потерь напора для любого замкнутого контура. Существует два различных условия расчета. Для автоматизированных вводов известны расходы воды у абонентов и характеристики сопротивления участков магистралей кольцевой сети. Для неавтоматизированных вводов известен располагаемый напор в узле подвода сетевой воды к кольцу в характеристики сопротивления всех участков. В обоих случаях требуется найти распределение расхода воды по участкам сети.


Рассмотрим первый случай, когда на абонентских вводах установлены регуляторы расхода на примере простейшей кольцевой сети (рис. VII.24). Зададимся произвольными расходами и направлениями потоков воды, как показано на расчетной схеме. При этом условимся считать положительными приток воды в узел и потерю напора для расхода, проходящего в контуре по часовой стрелке, а отрицательными сток воды из узла и потерю напора для расхода, проходящего против часовой стрелки. Согласно первому уравнению Кирхгофа Обычно при произвольно выбранном направлении потоков второе уравнение не соблюдается, поэтому где ΔР невязка потерь давления.


0) свидетельствует о перегрузке участков I,II по направлению часовой стрелки и недогрузке участков III, IV. Отрицательная величина невязки напоров указывает на обратное. Для устранения невязки напоров при" title="Положительное значение невязочного напора (ΔР>0) свидетельствует о перегрузке участков I,II по направлению часовой стрелки и недогрузке участков III, IV. Отрицательная величина невязки напоров указывает на обратное. Для устранения невязки напоров при" class="link_thumb"> 38 Положительное значение невязочного напора (ΔР>0) свидетельствует о перегрузке участков I,II по направлению часовой стрелки и недогрузке участков III, IV. Отрицательная величина невязки напоров указывает на обратное. Для устранения невязки напоров при ΔР>0 необходимо уменьшить расходы на участках I, II с движением воды по часовой стрелке, а на участках III, IV увеличить на одну и ту же величину невязочного расхода. Полагаем, что после введения в уравнение (VII.35) увязочного расхода ΔV второе уравнение Кирхгофа выполняется: Решая это равенство относительно увязочного расхода ΔV 2 и пренебрегая незначительностью величины AV 2, значение увязочного расхода определяем соотношением Где ΣSV величина всегда положительная. Вводя эту поправку в уравнение (VII.36), повторно проводят проверочный расчет и уточняют значение новой, более точной поправки по соотношению (VII.37). 0) свидетельствует о перегрузке участков I,II по направлению часовой стрелки и недогрузке участков III, IV. Отрицательная величина невязки напоров указывает на обратное. Для устранения невязки напоров при"> 0) свидетельствует о перегрузке участков I,II по направлению часовой стрелки и недогрузке участков III, IV. Отрицательная величина невязки напоров указывает на обратное. Для устранения невязки напоров при ΔР>0 необходимо уменьшить расходы на участках I, II с движением воды по часовой стрелке, а на участках III, IV увеличить на одну и ту же величину невязочного расхода. Полагаем, что после введения в уравнение (VII.35) увязочного расхода ΔV второе уравнение Кирхгофа выполняется: Решая это равенство относительно увязочного расхода ΔV 2 и пренебрегая незначительностью величины AV 2, значение увязочного расхода определяем соотношением Где ΣSV величина всегда положительная. Вводя эту поправку в уравнение (VII.36), повторно проводят проверочный расчет и уточняют значение новой, более точной поправки по соотношению (VII.37)."> 0) свидетельствует о перегрузке участков I,II по направлению часовой стрелки и недогрузке участков III, IV. Отрицательная величина невязки напоров указывает на обратное. Для устранения невязки напоров при" title="Положительное значение невязочного напора (ΔР>0) свидетельствует о перегрузке участков I,II по направлению часовой стрелки и недогрузке участков III, IV. Отрицательная величина невязки напоров указывает на обратное. Для устранения невязки напоров при"> title="Положительное значение невязочного напора (ΔР>0) свидетельствует о перегрузке участков I,II по направлению часовой стрелки и недогрузке участков III, IV. Отрицательная величина невязки напоров указывает на обратное. Для устранения невязки напоров при">


Так в результате нескольких уточнений определяют окончательно расходы воды на участках и точку водораздела кольца. При питании сети от двух и более источников расположение точки водораздела определяют аналогичным образом (рис. VII.25). Зададимся произвольно точкой водораздела (точка В) и составим второе уравнение Кирхгофа: Где H 1H 2 =ΔH разность напоров сетевых насосов, установленных на ТЭЦ 1 и ТЭЦ 2. Определив увязочный расход по формуле (VII.37), производят уточнение расположения точки водораздела. При положительном значении невязочного давления (ΔР>0) точка водораздела сместится в сторону ТЭЦ 2 (точка С), так как перегруженными оказываются участки I,II, и расходы воды на этих участках должны быть уменьшены. При отрицательных значениях невязочных давлений (ΔР 0) точка водораздела сместится в сторону ТЭЦ 2 (точка С), так как перегруженными оказываются участки I,II, и расходы воды на этих участках должны быть уменьшены. При отрицательных значениях невязочных давлений (ΔР">


Где знаки « + » и «» соответствуют движению воды по часовой стрелке и против. Затем находят расходы воды по формулам: где ΔР А располагаемый перепад давлений в точке подвода воды к кольцу. Далее проверяют выполнение второго уравнения Кирхгофа. При положительной невязке давления снижают долю расхода воды α, при отрицательной долю расхода воды α увеличивают. Можно, оставив α такими же, переместить точку водораздела в узел В или С. Подбор величин α производят до тех пор, пока не будет удовлетворено второе уравнение Кирхгофа. Пример 1. Для двухтрубной кольцевой водяной сети (см. рис. VII.25) диаметром 273x7 мм определить расходы воды на участках и разность давлений в точке водораздела. Давление сетевых насосов станций 0,7 MПa. При расчете принять: длины участков l I =200 м; l II =400 м; l III = 150 м; l Iv =450 м; расходы воды в ответвлениях V 1 =200 м 3 /ч; V 2 =150 м 3 /ч; V 3 =300 м 3 /ч; коэффициент местных потерь давления α0,3; удельную характеристику сопротивления трубопровода s=0.I267·10 -2 Па·ч 2 /м 6 ·м. Решение. 1. Сопротивления подающего и обратного трубопроводов для участков сети:





7. Повторно определяем величину невязки потерь давления ΔР"=(0.66· ,32· ,49·13 2 1,48·287 2)=210 Па=0,21·10 -6 МПа. Невязка потерь давления ничтожно мала, ею можно пренебречь, поэтому принимаем водоразделе точке Г. 8. Потеря давления от станции до ответвления N° 3 9. Разность напоров в точках подключения к кольцу ответвления 3 Пример 2. Определить расходы воды на участках закрытой двухтрубной тепловой сети, питаемой от двух источников тепла, а также разность давлений в точках водораздела (см. рис, VII.25). При расчете принять: расходы воды у абонентов V A =300 м 3 /ч; V B =200 м 3 /ч; V C =500 м 3 /ч; характеристики сопротивлений участков магистрали: S I =5 Па·ч 2 /м 6 ; S II = l,5 Пa·ч 2 /м 6 ; S III =0,6 Па·ч 2 /м 6 ; S IV =2 Па·ч 2 /м 6 ; разность напоров на коллекторах станций Решение. 1. Задавшись точкой водораздела в ответвлений к абоненту В, находим расходы воды на участках сети:


2. Невязка давления Невязка давления отрицательна, что указывает на перегрузку участков, питаемых от источника тепля Увязочный расход воды 4. Уточненные расколы воды на участках магистрали: 5. Невязка давления при уточненных расходах волы 6. Уточненный увязочный расход ВОДЫ




В задачу гидравлического расчета входят:

Определение диаметра трубопроводов;

Определение падения давления (напора);

Определение давлений (напоров) в различных точках сети;

Увязка всех точек сети при статическом и динамическом режимах с целью обеспечения допустимых давлений и требуемых напоров в сети и абонентских системах.

По результатам гидравлического расчета можно решить следующие задачи.

    Определение капитальных затрат, расхода металла (труб) и основного объема работ по прокладке тепловой сети.

    Определение характеристик циркуляционных и подпиточных насосов.

    Определение условий работы тепловой сети и выбора схем присоединения абонентов.

    Выбор автоматики для тепловой сети и абонентов.

    Разработка режимов эксплуатации.

      Схемы и конфигурации тепловых сетей.

Схема тепловой сети определяется размещением источников тепла по отношению к району потребления, характером тепловой нагрузки и видом теплоносителя.

Удельная протяженность паровых сетей на единицу расчетной тепловой нагрузки невелика, поскольку потребители пара – как правило, промышленные потребители – находятся на небольшом расстоянии от источника тепла.

Более сложной задачей является выбор схемы водяных тепловых сетей вследствие большой протяженности, большого количества абонентов. Водяные ТС менее долговечны, чем паровые вследствие большей коррозии, больше чувствительны к авариям из-за большой плотности воды.

Рис.6.1. Однолинейная коммуникационная сеть двухтрубной тепловой сети

Водяные сети разделяют на магистральные и распределительные. По магистральным сетям теплоноситель подается от источников тепла в районы потребления. По распределительным сетям вода подается на ГТП и МТП и к абонентам. Непосредственно к магистральным сетям абоненты присоединяются очень редко. В узлах присоединения распределительных сетей к магистральным устанавливаются секционирующие камеры с задвижками. Секционирующие задвижки на магистральных сетях обычно устанавливаются через 2-3 км. Благодаря установке секционирующих задвижек уменьшаются потери воды при авариях ТС. Распределительные и магистральные ТС с диаметром меньше 700 мм делаются обычно тупиковыми. В случае аварий для большей части территории страны допустим перерыв в теплоснабжении зданий до 24 часов. Если же перерыв в теплоснабжении недопустим, необходимо предусматривать дублирование или закольцовку ТС.


Рис.6.2. Кольцевая тепловая сеть от трех ТЭЦ Рис.6.3. Радиальная тепловая сеть

При теплоснабжении крупных городов от нескольких ТЭЦ целесообразно предусмотреть взаимную блокировку ТЭЦ путем соединения их магистралей блокировочными связями. В этом случае получается кольцевая тепловая сеть с несколькими источниками питания. Подобная схема имеет более высокую надежность, обеспечивает передачу резервирующих потоков воды при аварии на каком-либо участке сети. При диаметрах магистралей, отходящих от источника тепла 700 мм и менее, обычно применяют радиальную схему тепловой сети с постепенным уменьшением диаметра трубы по мере удаления от источника и снижения присоединенной нагрузки. Такая сеть наиболее дешевая, но при аварии теплоснабжение абонентов прекращается.

      Основные расчетные зависимости

Одномерное установившееся движение жидкости в трубе описывается уравнением Бернулли.


, где

Z 1 , Z 2 – геометрическая высота оси трубы в сечениях 1 и 2; w 1 и w 2 – скорости движения жидкости в сечениях 1 и 2; p 1 и p 2 – давление жидкости на оси трубы в сечениях 1 и 2; Dp – падение давления на отрезке 1-2; g – ускорение свободного падения. Уравнение Бернулли можно записать относительно напоров, разделив обе части на g .

Рис.6.1. Схема движения жидкости в трубе

Скорость жидкости в трубопроводах невелика, поэтому кинетической энергией потока можно пренебречь. Выражение H =p /rg называется пьезометрическим напором, а сумма высоты Z и пьезометрического напора называют полным напором.

H 0 = Z + p /r g = Z + H . (6.1)

Падение давления в трубе представляет собой сумму линейных потерь давления и потерь давления на местных гидравлических сопротивлениях.

Dp = Dp л + Dp м. (6.2)

В трубопроводах Dp л =R л L , где R л – удельное падение давления, т.е. падение давление единицы длины трубы, определяемое по формуле д"Арси.


. (6.3)

Коэффициент гидравлического сопротивления l зависит от режима течения жидкости и абсолютной эквивалентной шероховатости стенок трубы к э . Можно в расчетах принимать следующие значения к э – в паропроводах к э =0.2 мм; в водяных сетях к э =0.5 мм; в конденсатопроводах и системах ГВС к э =1 мм.

При ламинарном течении жидкости в трубе (Re < 2300)


. (6.4)

В переходной области 2300 < Re < 4000


. (6.5)

При


. (6.6)

Обычно в тепловых сетях Re > Re пр , поэтому (6.3) можно привести к виду


, где

. (6.7)

Потери давления на местных сопротивлениях определяются по формуле


. (6.8)

Значения коэффициента местного гидравлического сопротивления x приводятся в справочниках. При гидравлических расчетах можно учитывать потери давления на местных сопротивлениях через эквивалентную длину.


.

Тогда , где a = l экв / l – доля местных потерь давления.

      Порядок гидравлического расчета

Обычно при гидравлическом расчете задаются расход теплоносителя и суммарное падение давления на участке. Требуется найти диаметр трубопровода. Расчет состоит из двух этапов – предварительного и поверочного.

Предварительный расчет.

    Задаются долей местных падений давления a =0.3...0.6.

    Оценивают удельные потери давления


. Если падение давления на участке неизвестно, то задаются величиной R л < 20...30 Па/м.

    Рассчитывают диаметр трубопровода из условия работы в турбулентном режиме Для водяных тепловых сетей плотность принимают равной 975 кг/м 3 .

Из (6.7) найдем


, (6.9)

где r – средняя плотность воды на данном участке. По найденному значению диаметру выбирают по ГОСТ трубу с ближайшим внутренним диаметром. При выборе трубы указывают либо d у и d , либо d н и d .

2. Поверочный расчет.

Для концевых участков следует проверить режим движения. Если окажется, что режим движения переходный, то, если есть возможность, нужно уменьшить диаметр трубы. Если это невозможно, то нужно вести расчет по формулам переходного режима.

1. Уточняются значения R л ;

2. Уточняются типы местных сопротивлений и их эквивалентные длины. Задвижки устанавливаются на выходе и входе коллектора, в местах присоединения распределительных сетей к магистральным, ответвлений к потребителю и у потребителей. Если длина ответвления менее 25 м, то допускается устанавливать задвижку только у потребителя. Секционирующие задвижки устанавливаются через 1 – 3 км. Кроме задвижек возможны и другие местные сопротивления – повороты, изменения сечения, тройники, слияние и разветвление потока и т.д.

Для определения количества температурных компенсаторов длинны участков делятся на допустимое расстояние между неподвижными опорами. Результат округляется до ближайшего целого числа. Если на участке есть повороты, то они могут быть использованы для самокомпенсации температурных удлинений. При этом количество компенсаторов уменьшается на число поворотов.

    Определяются потери давления на участке. Для закрытых систем D p уч =2 R л (l + l э ).

Для открытых систем предварительный расчет ведется по эквивалентному расходу


При поверочном расчете удельные линейные потери давления рассчитываются отдельно для подающего и обратного трубопроводов для действительных расходов.


,

.

По окончании гидравлического расчета строится пьезометрический график.

      Пьезометрический график тепловой сети

На пьезометрическом графике в масштабе нанесены рельеф местности, высота присоединенных зданий, напор в сети. По этому графику легко определить напор и располагаемый напор в любой точке сети и абонентских системах.

За горизонтальную плоскость отсчета напоров принят уровень 1 – 1. Линия П1 – П4 – график напоров подающей линии. Линия О1 – О4 – график напоров обратной линии. Н о1 – полный напор на обратном коллекторе источника; Нсн – напор сетевого насоса; Нст – полный напор подпиточного насоса, или полный статический напор в тепловой сети; Нк – полный напор в т.К на нагнетательном патрубке сетевого насоса; DHт – потеря напора в теплоприготовительной установке; Нп1 – полный напор на подающем коллекторе, Нп1= Нк - DHт. Располагаемый напор сетевой воды на коллекторе ТЭЦ Н1=Нп1-Но1. Напор в любой точке сети i обозначается как Нпi, Hoi – полные напоры в прямом и обратном трубопроводе. Если геодезическая высота в точке i есть Zi, то пьезометрический напор в этой точке есть Нпi – Zi, Hoi – Zi в прямом и обратном трубопроводах, соответственно. Располагаемый напор в точке i есть разность пьезометрических напоров в прямом и обратном трубопроводах – Нпi – Hoi. Располагаемый напор в ТС в узле присоединения абонента Д есть Н4 = Нп4 – Но4.


Рис.6.2. Схема (а) и пьезометрический график (б) двухтрубной тепловой сети

Потеря напора в подающей линии на участке 1 – 4 есть

. Потеря напора в обратной линии на участке 1 – 4 есть

. При работе сетевого насоса напор Нст подпиточного насоса регулируется регулятором давления до Но1. При остановке сетевого насоса в сети устанавливается статический напор Нст, развиваемый подпиточным насосом. При гидравлическом расчете паропровода можно не учитывать профиль паропровода из-за малой плотности пара. Потери напора у абонентов, например

зависит от схемы присоединения абонента. При элеваторном смешении DН э= 10…15 м, при безэлеваторном вводе – Dн б э =2…5 м, при наличии поверхностных подогревателей DН п=5…10 м, при насосном смешении DН нс= 2…4 м.

Требования к режиму давления в тепловой сети:

      в любой точке системы давление не должно превышать максимально допустимой величины. Трубопроводы системы теплоснабжения рассчитаны на 16 ата, трубопроводы местных систем – на давление 6-7 ата;

      во избежание подсосов воздуха в любой точке системы давление должно быть не менее 1.5 ата. Кроме того это условие необходимо для предупреждения кавитации насосов;

      в любой точке системы давление должно быть не меньше давления насыщения при данной температуре во избежание вскипания воды;

6.5. Особенности гидравлического расчета паропроводов.

Диаметр паропровода рассчитывают исходя либо из допустимых потерь давления, либо из допустимой скорости пара. Предварительно задается плотность пара на расчетном участке.

Расчет по допустимым потерям давления.

Оценивают

, a = 0.3...0.6. По (6.9) рассчитывают диаметр трубы.

Задаются скоростью пара в трубе. Из уравнения для расхода пара – G = w r F находят диаметр трубы.

По ГОСТу подбирается труба с ближайшим внутренним диаметром. Уточняются удельные линейные потери и виды местных сопротивлений, рассчитываются эквивалентные длины. Определяется давление на конце трубопровода. Рассчитываются потери тепла на расчетном участке по нормируемым потерям тепла.

Q пот = q l l , где q l – потери тепла на единицу длины при заданной разности температур пара и окружающей среды с учетом потерь тепла на опорах, задвижках и т.п. Если q l определено без учета потерь тепла на опорах, задвижках и т.п., то

Q пот = q l (t ср t o )(1+ b ), где t ср - средняя температура пара на участке, t o – температура окружающей среды, зависящая от способа прокладки. При наземной прокладке t o = t н o , при подземной бесканальной прокладке t o = t гр (температура грунта на глубине укладки), при прокладке в проходных и полупроходных каналах t o =40…50 0 С. При прокладке в непроходных каналах t o = 5 0 С. По найденным потерям тепла определяют изменение энтальпии пара на участке и значение энтальпии пара в конце участка.

D i уч = Q пот / D , i к = i н - D i уч .

По найденным значениям давления и энтальпии пара в начале и конце участка определяется новое значение средней плотности пара r ср = (r н + r к )/2 . Если новое значение плотности отличается от ранее заданного более чем на 3 %, то поверочный расчет повторяют с уточнением одновременно и R л .

      Особенности расчета конденсатопроводов

При расчете конденсатопровода необходимо учитывать возможное парообразование при понижении давления ниже давления насыщения (вторичный пар), конденсацию пара за счет тепловых потерь и пролетный пар после конденсатоотводчиков. Количество пролетного пара определяется по характеристике конденсатоотводчика. Количество сконденсировавшегося пара определяется по потере тепла и теплоте парообразования. Количество вторичного пара определяется по средним параметрам на расчетном участке.

Если конденсат близок к состоянию насыщения, то расчет нужно вести как для паропровода. При транспорте переохлажденного конденсата расчет выполняется так же, как и для водяных сетей.

      Режим давления в сети и выбор схемы абонентского ввода.

Статическое давление это давление, которое устанавливается после отключения циркуляционных насосов. Уровень статического давления (напора) обязательно указывается на пьезометрическом графике. Величина этого давления (напора) устанавливается исходя из ограничения величины давления для отопительных приборов и не должна превышать 6 ати (60 м). При спокойном рельефе местности уровень статического давления может быть одним и тем же для всех потребителей. При больших колебания рельефа местности может быть два, но не более трех статических уровней.


Рис.6.3. График статических напоров системы теплоснабжения

На рис.6.3 изображен график статических напоров и схема системы теплоснабжения. Высота зданий A, B и С одинакова и равна 35 м. Если провести линию статического напора на 5 метров выше здания С, то здания В и А окажутся в зоне напора в 60 и 80 м. Возможны следующие решения.

    Отопительные установки зданий А присоединяются по независимой схеме, а в зданиях В и С – по зависимой. В этом случае для всех зданий устанавливается общая статическая зона. Водо-водяные подогреватели будут находиться под напором в 80 м, что допустимо с точки зрения прочности. Линия статических напоров – S - S.

    Отопительные установки здания С присоединяются по независимой схеме. В этом случае полный статический напор можно выбрать по условиям прочности установок зданий А и В – 60 м. Этот уровень обозначен линией М – М.

    Отопительные установки всех зданий присоединены по зависимой схеме, но зона теплоснабжения разделена на две части – одна на уровне М-М для зданий А и В, другая на уровне S-S для здания С. Для этого между зданиями В и С устанавливается обратный клапан 7 на прямой линии и подпиточный насос верхней зоны 8 и регулятор давления 10 на обратной линии. Поддержание заданного статического напора в зоне С осуществляется подпиточным насосом верхней зоны 8 и регулятором подпитки 9. Поддержание заданного статического напора в нижней зоне осуществляется насосом 2 и регулятором 6.

При гидродинамическом режиме работы сети вышеперечисленные требования тоже должны соблюдаться в любой точке сети при любой температуре воды.


Рис.6.4. Построение графика гидродинамических напоров системы теплоснабжения

    Построение линий максимальных и минимальных пьезометрических напоров.

Линии допустимых напоров следуют за рельефом местности, т.к. принято, что трубопроводы прокладываются в соответствии с рельефом. Отсчет – от оси трубы. Если оборудование имеет существенные размеры по высоте, то минимальный напор отсчитывают от верхней точки, а максимальный – от нижней.

1.1. Линия Пmax – линия максимально допустимых напоров в подающей линии.

Для пиковых водогрейных котлов максимал ьно допустимый напор отсчитывают от нижней точки котла (принимают, что она находится на уровне земли), а минимально допустимый напор – от верхнего коллектора котла. Допустимое давление для стальных водогрейных котлов 2.5 Мпа. С учетом потерь принято на выходе из котла Hmax=220 м. Максимально допустимый напор в подающей линии ограничен прочностью трубопровода (рmax=1.6 Мпа). Поэтому на входе в подающую линию Нmax=160 м.

      Линия Оmax – линия максимально допустимых напоров в обратной линии.

По условию прочности водоводяных подогревателей максимальное давление не должно быть выше 1.2 Мпа. Поэтому максимальное значение напора равно 140 м. Величина напора для отопительных установок не может превышать 60 м.

Минимально допустимый пьезометрический напор определяют по температуре кипения, превышающую на 30 0 С расчетную температуру на выходе из котла.

      Линия Пmin – линия минимально допустимого напора в прямой линии

Минимально допустимый напор на выходе из котла определяется из условия невскипания в верхней точке – для температуры 180 0 С. Устанавливается 107 м. Из условия невскипания воды при температуре 150 0 С минимальный напор должен быть 40 м.

1.4. Линия Оmin – линия минимально допустимого напора в обратной линии. Из условия недопустимости подсосов воздуха и кавитации насосов принят минимальный напор в 5 м.

Действительные линии напоров в прямой и обратной линиях ни при каких режимах не могут выходить за пределы линий максимальных и минимальных напоров.

Пьезометрический график дает полное представление о действующих напорах при статическом и гидродинамическом режимах. В соответствии с этой информацией выбирается тот или иной метод присоединения абонентов.


Рис.6.5. Пьезометрический график

Здание 1. Располагаемый напор больше 15 м, пьезометрический – меньше 60 м. Можно отопительную установку присоединить по зависимой схеме с элеваторным узлом.

Здание 2. В этом случае также можно применить зависимую схему, но т.к. напор в обратной линии меньше высоты здания в узле присоединения нужно установить регулятор давления "до себя". Перепад давления на регуляторе должен быть больше разницы между высотой установки и пьезометрическим напором в обратной линии.

Здание 3. Статический напор в этом месте больше 60 м. Лучше всего применить независимую схему.

Здание 4. Располагаемый напор в этом месте меньше 10 м. Поэтому элеватор работать не будет. Нужно устанавливать насос. Его напор должен быть равен потерям напора в системе.

Здание 5. Нужно использовать независимую схему – статический напор в этом месте больше 60 м.

6.8. Гидравлический режим тепловых сетей

Потери давления в сети пропорциональны квадрату расхода


. Пользуясь формулой для расчета потерь давления, найдем S.


.

Потери напора в сети определяются как

, где

.

При определении сопротивления всей сети действуют следующие правила.

1. При последовательном соединении элементов сети суммируются их сопротивления S .

S S =Ss i .

    При параллельном соединении элементов сети суммируются их проводимости.


.

.

Одна из задач гидравлического расчета ТС – определение расхода воды у каждого абонента и в сети в целом. Обычно известны: схема сети, сопротивление участков и абонентов, располагаемый напор на коллекторе ТЭЦ или котельной.


Рис. 6.6. Схема тепловой сети

Обозначим S I – S V – сопротивления участков магистрали; S 1 – S 5 – сопротивления абонентов вместе с ответвлениями; V – суммарный расход воды в сети, м 3 /с; V m – расход воды через абонентскую установку m ; S I -5 – сопротивление элементов сети от участка I до ответвления 5; S I -5 =S I + S 1-5, где S 1-5 – суммарное сопротивление абонентов 1-5 с соответствующими ответвлениями.

Расход воды через установку 1 найдем из уравнения


, отсюда

.

Для абонентской установки 2


. Разность расходов

найдем из уравнения


, где

. Отсюда


.

Для установки 3 получим



- сопротивление тепловой сети со всеми ответвлениями от абонента 3 до последнего абонента 5 включительно;

,

- сопротивление участка III магистрали.

Для некоторого m -го потребителя из n относительный расход воды находится по формуле


. По этой формуле можно найти расход воды через любую абонентскую установку, если известен суммарный расход в сети и сопротивления участков сети.

    Относительный расход воды через абонентскую установку зависит от сопротивления сети и абонентских установок и не зависит от абсолютного значения расхода воды.

    Если к сети присоединены n абонентов, то отношение расходов воды через установки d и m , где d < m , зависит только от сопротивления системы, начиная от узла d до конца сети, и не зависит от сопротивления сети до узла d .

Если на каком-либо участке сети изменится сопротивление, то у всех абонентов, расположенных между этим участком и концевой точкой сети, расход воды изменится пропорционально. В этой части сети достаточно определить степень изменения расхода только у одного абонента. При изменении сопротивления любого элемента сети изменится расход как в сети, так и у всех потребителей, что приводит к разрегулировке. Разрегулировки в сети бывают соответственные и пропорциональные. При соответственной разрегулировке совпадает знак изменения расходов. При пропорциональной разрегулировке совпадает степень изменения расходов.


Рис. 6.7. Изменение напоров сети при отключении одного из потребителей

Если от тепловой сети отключится абонент Х, то суммарное сопротивление сети увеличится (параллельное соединение). Расход воды в сети уменьшится, потери напора между станцией и абонентом Х уменьшатся. Поэтому график напора (пунктир) пойдет положе. Располагаемый напор в точке Х увеличится, поэтому расход в сети от абонента Х до концевой точки сети увеличится. У всех абонентов от точки Х до концевой точки степень изменения расхода будет одинакова – пропорциональная разрегулировка.


У абонентов между станцией и точкой Х степень изменения расхода будет разной. Минимальная степень изменения расхода будет у первого абонента непосредственно у станции – f =1. По мере удаления от станции f > 1 и увеличивается. Если на станции изменится располагаемый напор, то суммарный расход воды в сети, а также расходы воды у всех абонентов изменятся пропорционально корню квадратному из располагаемого напора на станции.

6.9. Сопротивление сети.

Суммарная проводимость сети


, отсюда


.

По аналогии


и


. Расчет сопротивления сети ведется от наиболее удаленного абонента.

      Включение насосных подстанций.

Насосные подстанции могут устанавливаться на подающем, обратном трубопроводах,

а также на перемычке между ними. Сооружение подстанций вызывается неблагоприятным рельефом, большой дальностью передачи, необходимостью увеличения пропускной способностью и т.д.

а). Установка насоса на подающей или обратной линиях.


Рис.6.8. Установка насоса на подающей или последовательной линиях (последовательная работа)

При установке насосной подстанции (НП) на подающей или обратной линиях расходы воды у потребителей, расположенных между станцией и НП уменьшаются, а у потребителей после НП – возрастают. В расчетах насос учитывается как некоторое гидравлическое сопротивление. Расчет гидравлического режима сети с НП ведут методом последовательных приближений.

Задаются отрицательным значением гидравлического сопротивления насоса


(*)

Рассчитывают сопротивление в сети, расходы воды в сети и у потребителей

Уточняются расход воды и напор насоса и его сопротивление по (*).


Рис.6.10. Суммарные характеристики последовательно и параллельно включенных насосов

При параллельном включении насосов суммарная характеристика получается путем суммирования абсцисс характеристик. При последовательном включении насосов суммарная характеристика получается суммированием ординат характеристик. Степень изменения подачи при параллельном включении насосов зависит от вида характеристики сети. Чем меньше сопротивление сети, тем эффективнее параллельное включение и наоборот.

Рис.6.11. Параллельное включение насосов

При последовательном включении насосов суммарная подача воды всегда больше, чем подача воды каждым из насосов в отдельности. Чем больше сопротивление сети, тем эффективнее последовательное включение насосов.

б). Установка насоса на перемычке между подающей и обратной линиях.

При установке насоса на перемычке температурный режим до и после НП неодинаков.

Для построения суммарной характеристики двух насосов предварительно характеристику насоса А переносят в узел 2, где установлен насос Б (см.рис.6.12). На приведенной характеристике насоса А2 - 2 напоры при любом расходе равны разности действительного напора этого насоса и потери напора в сети С для этого же расхода.


. После приведения характеристик насосов А и Б к одному и тому же общему узлу они складываются по правилу сложения параллельно работающих насосов. При работе одного насоса Б напор в узле 2 равен

, расход воды . При подключении второго насоса А напор в узле 2 возрастает до



, а суммарный расход воды увеличивается до V > . Однако непосредственная подача насоса Б при этом уменьшается до

.


Рис.6.12. Построение гидравлической характеристики системы с двумя насосами в разных узлах

      Работа сети с двумя источниками питания

Если ТС питается от нескольких источников тепла, то в магистральных линиях возникают точки встречи потоков воды от разных источников. Положение этих точек зависит от сопротивления ТС, распределения нагрузки вдоль магистрали, располагаемых напоров на коллекторах ТЭЦ. Суммарный расход воды в таких сетях, как правило, задан.


Рис.6.13. Схема ТС, питаемой от двух источников

Точка водораздела находится следующим образом. Задаются произвольными значениями расхода воды на участках магистрали исходя их 1-го закона Кирхгофа. Определяют невязки напора на основе 2-го закона Кирхгофа. Если при предварительно выбранном распределении расхода водораздел выбран в т.К, то второе уравнение Кирхгофа запишется в виде

,

.

По 2-му закону Кирхгофа определяется невязка потерь давления D p . Чтобы сделать невязку давления равной нулю, нужно ввести в расчет поправку расхода – увязочный расход. Для этого в уравнении полагают D p =0 и вместо V вводят V + d V или V - d V . Получим


. Знак D p равен знаку d V . Далее уточняется распределение расхода на участках сети. Для поиска точки водораздела проверяются два расположенных рядом потребителя.


Рис.6.14. Определение положения точки водораздела

а). Точка водораздела находится между потребителями m и m +1 . В этом случае

. Здесь

- перепад давления у потребителя m при питании от станции А.

- перепад давления у потребителя m+1 при питании от станции В.

Пусть точка водораздела находится между потребителями 1 и 2. Тогда


;

. Если эти два перепада давления равны, то точка водораздела находится между потребителями 1 и 2. Если нет, то проверяется следующая пара потребителей, и т.д. Если ни для одной пары потребителей не обнаружено равенство располагаемых напоров, это означает, что точка водораздела находится у одного из потребителей.

б). Точка водораздела находится у потребителя m , у которого

,

.




(*)

Расчет ведется в следующем порядке.




,

.

      Кольцевая сеть.

Кольцевую сеть можно рассматривать как сеть с двумя источниками питания с равными напорами сетевых насосов. Положение точки водораздела в подающей и обратной магистралях совпадает, если сопротивления подающей и обратной линий одинаковы и нет подкачивающих насосов. В противном случае положения точки водораздела в подающей и обратной линиях нужно определять отдельно. Установка подкачивающего насоса приводит к смещению точки водораздела только в той линии, на которой он установлен.


Рис.6.15. График напоров в кольцевой сети

В этом случае Н А = Н В .

      Включение насосных подстанций в сети с двумя источниками питания


Для стабилизации режима давления при наличии подкачивающего насоса на одной из станций напор на входном коллекторе поддерживается постоянным. Эту станцию называют фиксированной, другие станции – свободными. При установке подкачивающего насоса напор во входном коллекторе свободной станции меняется на величину

.

      Гидравлический режим открытых систем теплоснабжения

Основная особенность гидравлического режима открытых систем теплоснабжения заключается в том, что при наличии водоразбора расход воды в обратной линии меньше, чем в подающей. Практически эта разность равна водоразбору.


Рис.6.18. Пьезометрический график открытой системы

Пьезометрический график подающей линии остается постоянным при любом водоразборе из обратной линии, так как расход в подающей линии поддерживается постоянным с помощью регуляторов расхода на абонентских вводах. С увеличением водоразбора уменьшается расход в обратной линии и пьезометрический график обратной линии становится более пологим. Когда водоразбор равен расходу в подающей линии, расход в обратной равен нулю и пьезометрический график обратной линии становится горизонтальным. При одинаковых диаметрах прямой и обратной линий и отсутствии водоразбора графики напора в прямой и обратной линиях симметричны. При отсутствии водоразбора на ГВС расход воды равен расчетному расходу на отопление – V o – в прямом и обратном трубопроводах. При водоразборе полностью из прямой линии расход воды в обратной линии равен расходу на отопление, а в подающей линии – сумме расходов на отопление и ГВС. При этом снижается располагаемый напор на системе отопления и расход воды V o меньше расчетного. При водоразборе только из обратной линии располагаемый напор на систему отопления выше расчетного. Потери давления складываются из потерь давления в подающей линии, системе отопления и обратной линии.

При отсутствии нагрузки ГВС

При наличии водоразбора на ГВС

Делим (**) на (*). Обозначим


;

;

;

.

Из уравнения (***) можно найти f .


    При разборе воды на ГВС из подающей линии расход через систему отопления падает. При разборе из обратной линии – растет. При b =0.4 расход воды через систему отопления равен расчетному.

    Степень изменения расхода воды через систему отопления –

  1. Степень изменения расхода воды через систему отопления тем больше, чем меньше сопротивление системы.

Увеличение водоразбора на ГВС может привести к ситуации, когда вся вода после системы отопления будет поступать на водоразбор ГВС. При этом расход воды в обратном трубопроводе будет равен нулю.


. Из (***):

, откуда

(****)

Подставим (****) в (***) и найдем .


.

При

вода на ГВС начинает поступать из обратной линии и после системы отопления. При этом давление в системе отопления падает и при некотором значении нагрузки ГВС избыточное давление станет равным 0. В этом случае вода в систему отопления поступать не будет, а на ГВС вода будет поступать из подающей и обратной линий. Это – критический режим для системы отопления – f =0. Из (***):


. Знак "-" означает, что направление движения в обратной линии изменилось на противоположное. Отсюда найдем


.

Условие выравнивания режима -

. Для поддержания V o на на расчетном уровне целесообразно работать с переменным напором сетевых насосов на станции.